Our two closest living primate relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), exhibit significant behavioral differences despite belonging to the same genus and sharing a very recent common ancestor. Differences have been reported in multiple aspects of social behavior, including aggression, sex, play and cooperation. However, the neurobiological basis of these differences has only been minimally investigated and remains uncertain. Here, we present the first ever comparison of chimpanzee and bonobo brains using diffusion tensor imaging, supplemented with a voxel-wise analysis of T1-weighted images to specifically compare neural circuitry implicated in social cognition. We find that bonobos have more gray matter in brain regions involved in perceiving distress in both oneself and others, including the right dorsal amygdala and right anterior insula. Bonobos also have a larger pathway linking the amygdala with the ventral anterior cingulate cortex, a pathway implicated in both top-down control of aggressive impulses as well as bottom-up biases against harming others. We suggest that this neural system not only supports increased empathic sensitivity in bonobos, but also behaviors like sex and play that serve to dissipate tension, thereby limiting distress and anxiety to levels conducive with prosocial behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324566 | PMC |
http://dx.doi.org/10.1093/scan/nsr017 | DOI Listing |
Psychol Res
January 2025
School of Psychology, Shenzhen University, Shenzhen, China.
Extrinsic motivation can foster effortful cognitive control. Moreover, the selective coupling of extrinsic motivation on low- versus high-control demands tasks would exert an additional impact. However, to what extent their influences are further modulated by the level of Need for Cognition (NFC) remains unclear.
View Article and Find Full Text PDFInterpersonal space is regulated carefully and updated dynamically during social interactions to maintain comfort. We investigated the naturalistic processing of interpersonal distance in real time and space using a powerful implicit neurophysiological measure of attentional engagement. In a sample of 37 young adults recruited at a UK university, we found greater EEG alpha band suppression when a person occupies or moves into near personal space than for a person occupying or moving into public space.
View Article and Find Full Text PDFJ Aging Health
January 2025
School of Public Policy & Maryland Population Research Center, University of Maryland, College Park, MD, USA.
Objectives: We determined if living in historically redlined neighborhoods was associated with level and change in cognitive functioning and if this association differed for Black and White older adults.
Methods: We linked the Health and Retirement Study 1998-2018 data to redlining scores from the Historic Redlining Indicator data. Our sample included adults aged 50 years and older (24,230 respondents, 129,618 person-period observations).
Neuropsychol Dev Cogn B Aging Neuropsychol Cogn
January 2025
Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
Greater neighborhood disadvantage is associated with poorer global cognition. However, less is known about the variation in the magnitude of neighborhood effects across individual cognitive domains and whether the strength of these associations differs by individual-level factors. The current study investigated these questions in a community sample of older adults ( = 166, mean age = 72.
View Article and Find Full Text PDFNat Med
January 2025
Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!