Caveolae and caveolin-1 in reptilian liver.

Micron

Australian Centre for Microscopy & Microanalysis (ACMM), Madsen Building (F09), The University of Sydney, NSW 2006, Australia.

Published: August 2011

Caveolae are plasma-membrane invaginations that, by interacting with membrane-associated molecules such as endothelial nitric oxide synthase and tyrosine kinases, precisely regulate cell-signalling pathways responsible for cell structure and cell function. Indeed, there is widespread evidence that caveolae associate, structurally and functionally, with proteins, lipids and solutes to facilitate transcellular transport of these macromolecules. Caveolin-1, one of the family of membrane proteins that form caveolae, is most prominently expressed in endothelial cells of the vascular bed. Therefore, we have applied advanced electron microscopy as well as molecular biology techniques to study the presence of caveolae and caveolin-1 in the liver sinusoidal endothelium of reptiles. Reptiles are known to store excess lipid in the liver as an energy source for hibernation, and so offer a useful animal model in which to assess the structural and functional implications these subcellular compartments might have on liver sinusoidal endothelial transport. This study demonstrates that caveolae are indeed conserved across vertebrate species, whether mammalian or reptilian. It also presents as first novel data on the presence of caveolin-1-associated, tubular structures located within the cytoplasm of the lizard liver sinusoidal endothelium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2011.03.005DOI Listing

Publication Analysis

Top Keywords

liver sinusoidal
12
caveolae caveolin-1
8
sinusoidal endothelium
8
caveolae
6
liver
5
caveolin-1 reptilian
4
reptilian liver
4
liver caveolae
4
caveolae plasma-membrane
4
plasma-membrane invaginations
4

Similar Publications

Background And Aims: Porto-sinusoidal vascular disorder (PSVD) is a rare vascular liver disorder characterised by specific histological findings in the absence of cirrhosis, which is poorly understood in terms of pathophysiology. While elevated hepatic copper content serves as diagnostic hallmark in Wilson disease (WD), hepatic copper content has not yet been investigated in PSVD.

Methods: Patients with a verified diagnosis of PSVD at the Medical University of Vienna and available hepatic copper content at the time of diagnosis of PSVD were retrospectively included.

View Article and Find Full Text PDF

The pan-PPAR agonist lanifibranor reduces portal pressure independent of fibrosis reduction through the splanchnic vasculature.

Biomed Pharmacother

January 2025

Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium. Electronic address:

Portal hypertension (PH) can cause severe complications in patients with advanced chronic liver disease (aCLD). The pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist lanifibranor reduces portal pressure in preclinical models of aCLD. Since the effect on PH might be secondary to fibrosis improvement, we investigated the effect of lanifibranor on PH, hepatic and splanchnic angiogenesis in mouse models of fibrotic and prehepatic non-fibrotic PH.

View Article and Find Full Text PDF

Protocol for isolating and purifying murine liver sinusoidal endothelial cells for in vitro culture and functional assays.

STAR Protoc

January 2025

Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. Electronic address:

Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and play a crucial role in liver function. Isolating LSECs is beneficial for their functional evaluation in vitro. Here, we provide a protocol for obtaining purified LSECs from mice via gradient centrifugation and magnetic cell sorting (MACS), yielding cells suitable for culture and downstream analyses.

View Article and Find Full Text PDF

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs.

Expert Opin Drug Metab Toxicol

January 2025

Institut de R&D Servier, Paris-Saclay, F-91190 Gif-sur-Yvette, France.

Introduction: Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays.

Area Covered: This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!