Previous studies have suggested that substance P (SP) plays a critical role in the development of brain oedema and functional deficits following traumatic brain injury and that SP receptor antagonism may improve outcome. No studies have described such a role in ischemic stroke. The present study characterized the effects of the NK1 tachykinin receptor antagonist, n-acetyl-L-tryptophan (NAT), on blood-brain barrier (BBB) breakdown, oedema formation, infarct volume and functional outcome following reversible ischemic stroke in rats. Ischemia was induced using a reversible thread model of middle cerebral artery occlusion where occlusion was maintained for 2 h before reperfusion. Animals received either NAT or equal volume saline vehicle intravenously at 2 h post-reperfusion. Ischaemic stroke resulted in increased perivascular SP immunoreactivity at 24 h. Administration of NAT significantly reduced oedema formation and BBB permeability at 24 h post-ischemia and significantly improved functional outcome as assessed over 7 days. There was no effect on infarct volume. We conclude that inhibition of SP activity with a NK1 tachykinin receptor antagonist is effective in reducing cerebral oedema, BBB permeability and functional deficits following reversible ischemia and may therefore represent a novel therapeutic approach to the treatment of ischaemic stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2011.03.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!