The physiology, pharmacology and future of P2X7 as an analgesic drug target: hype or promise?

Curr Pharm Biotechnol

Neuroscience, Johnson & Johnson Pharmaceutical Research & Development LLC., San Diego, CA 92121, USA.

Published: October 2011

P2X7 is an ATP-gated non-selective cation channel expressed primarily on cells of hematopoietic origin, such as macrophages and microglia. Since the initial cloning of this channel, enormous progress has been made in the understanding of the physiology, pharmacology and therapeutic utility of P2X7. This article attempts to review the biology of P2X7 with a focus on the complex pharmacology of this channel. Finally, the authors discuss the role of P2X7 as an analgesic drug target and raise some of the challenges and issues that face the P2X7 research community.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138920111798357429DOI Listing

Publication Analysis

Top Keywords

physiology pharmacology
8
p2x7 analgesic
8
analgesic drug
8
drug target
8
p2x7
6
pharmacology future
4
future p2x7
4
target hype
4
hype promise?
4
promise? p2x7
4

Similar Publications

Background And Objectives: The most effective antiseizure medications (ASMs) for poststroke seizures (PSSs) remain unclear. We aimed to determine outcomes associated with ASMs in people with PSS.

Methods: We systematically searched electronic databases for studies on patients with PSS on ASMs.

View Article and Find Full Text PDF

Design, Synthesis, and Pharmacological Evaluation of Nonsteroidal Tricyclic Ligands as Modulators of GABA Receptors.

J Med Chem

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.

GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.

View Article and Find Full Text PDF

Curcumin is known for its potential health benefits; however, the evidence remains inconclusive regarding its necessity as a supplement for athletes during the preparatory phase of training. This study aimed to assess the effect of 6-week curcumin supplementation at a dose of 2g/day on selected inflammatory markers, blood count, and brain-derived neurotropic factor (BDNF) levels in middle-aged amateur long-distance runners during the preparatory period of a macrocycle. Thirty runners were randomly assigned to either a curcumin-supplemented group (CUR, n = 15) or a placebo group (PLA, n = 15).

View Article and Find Full Text PDF

Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles.

View Article and Find Full Text PDF

Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.

Cell Rep

January 2025

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!