A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin-HER2 interface. | LitMetric

Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin-HER2 interface.

Protein Sci

California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California 94158-2330, USA.

Published: June 2011

Computational protein design methods can complement experimental screening and selection techniques by predicting libraries of low-energy sequences compatible with a desired structure and function. Incorporating backbone flexibility in computational design allows conformational adjustments that should broaden the range of predicted low-energy sequences. Here, we evaluate computational predictions of sequence libraries from different protocols for modeling backbone flexibility using the complex between the therapeutic antibody Herceptin and its target human epidermal growth factor receptor 2 (HER2) as a model system. Within the program RosettaDesign, three methods are compared: The first two use ensembles of structures generated by Monte Carlo protocols for near-native conformational sampling: kinematic closure (KIC) and backrub, and the third method uses snapshots from molecular dynamics (MD) simulations. KIC or backrub methods were better able to identify the amino acid residues experimentally observed by phage display in the Herceptin-HER2 interface than MD snapshots, which generated much larger conformational and sequence diversity. KIC and backrub, as well as fixed backbone simulations, captured the key mutation Asp98Trp in Herceptin, which leads to a further threefold affinity improvement of the already subnanomolar parental Herceptin-HER2 interface. Modeling subtle backbone conformational changes may assist in the design of sequence libraries for improving the affinity of antibody-antigen interfaces and could be suitable for other protein complexes for which structural information is available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104238PMC
http://dx.doi.org/10.1002/pro.632DOI Listing

Publication Analysis

Top Keywords

herceptin-her2 interface
12
kic backrub
12
protein design
8
design methods
8
therapeutic antibody
8
low-energy sequences
8
backbone flexibility
8
sequence libraries
8
backbone
5
assessment flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!