A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis. | LitMetric

Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca(2+) -induced conformational changes in recoverin promote extrusion of its covalently attached myristate, known as the Ca(2+)-myristoyl switch. Here, we present nuclear magnetic resonance (NMR) relaxation dispersion and chemical shift analysis on (15) N-labeled recoverin to probe main chain conformational dynamics. (15) N NMR relaxation data suggest that Ca(2+)-free recoverin undergoes millisecond conformational dynamics at particular amide sites throughout the protein. The addition of trace Ca(2+) levels (0.05 equivalents) increases the number of residues that show detectable relaxation dispersion. The Ca(2+)-dependent chemical shifts and relaxation dispersion suggest that recoverin has an intermediate conformational state (I) between the sequestered apo state (T) and Ca(2+) saturated extruded state (R): T ↔ I ↔ R. The first step is a fast conformational equilibrium ([T]/[I] < 100) on the millisecond time scale (τ(ex) δω < 1). The final step (I ↔ R) is much slower (τ(ex) δω > 1). The main chain structure of I is similar in part to the structure of half-saturated E85Q recoverin with a sequestered myristoyl group. We propose that millisecond dynamics during T ↔ I may transiently increase the exposure of Ca(2+)-binding sites to initiate Ca(2+) binding that drives extrusion of the myristoyl group during I ↔ R.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092842PMC
http://dx.doi.org/10.1002/prot.23014DOI Listing

Publication Analysis

Top Keywords

relaxation dispersion
16
conformational dynamics
12
nmr relaxation
12
ca2+-myristoyl switch
8
dispersion chemical
8
chemical shift
8
shift analysis
8
calcium sensor
8
main chain
8
τex δω
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!