Background: Head CT scans are considered the imaging modality of choice to screen patients with head trauma for neurocranial injuries; however, widespread CT imaging is not recommended and much research has been conducted to establish objective clinical predictors of intracranial injury (ICI) in order to optimize the use of neuroimaging in children with minor head trauma.
Objective: To evaluate whether a strict application of the New Orleans Criteria (NOC), Canadian CT Head Rule (CCHR) and National Emergency X-Radiography Utilization Study II (NEXUS II) in pediatric patients with head trauma presenting to a non-trauma center (level II) could reduce the number of cranial CT scans performed without missing clinically significant ICI.
Materials And Methods: We conducted an IRB-approved retrospective analysis of pediatric patients with head trauma who received a cranial CT scan between Jan. 1, 2001, and Sept. 1, 2008, and identified which patients would have required a scan based on the criteria of the above listed decision instruments. We then determined the sensitivities, specificities and negative predictive values of these aids.
Results: In our cohort of 2,101 patients, 92 (4.4%) had positive head CT findings. The sensitivities for the NOC, CCHR and NEXUS II were 96.7% (95%CI 93.1-100), 65.2% (95%CI 55.5-74.9) and 78.3% (95%CI 69.9-86.7), respectively, and their negative predictive values were 98.7%, 97.6% and 97.2%, respectively. In contrast, the specificities for these aids were 11.2% (95%CI 9.8-12.6), 64.2% (95%CI 62.1-66.3) and 34.2% (95%CI 32.1-36.3), respectively. Therefore, in our population it would have been possible to scan at least 10.9% fewer patients.
Conclusions: The number of cranial CT scans conducted in our pediatric cohort with head trauma would have been reduced had any of the three clinical decision aids been applied. Therefore, we recommend that further validation and adoption of pediatric head CT decision aids in non-trauma centers be considered to ultimately increase patient safety while reducing medical expense.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00247-011-2032-4 | DOI Listing |
Nat Commun
January 2025
Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how this kind of injury alters neuron subtypes. In this study, we follow neuronal populations over time after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress-responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.
View Article and Find Full Text PDFPract Neurol
January 2025
Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
Most minor head injuries have no immediate neurological sequelae. We present a case where acute neurological symptoms followed a very minor head injury, and an underlying genetic cause was identified. We highlight the role that head injuries, even when innocuous, may have in precipitating and worsening a neurogenetic disorder.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Ophthalmology, Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, UK.
Approximately 3% of individuals in road traffic accidents suffer ocular injuries. We present a case of a man in his late 80s who presented with bilateral corneal decompensation following airbag deployment during a road traffic accident. Ocular examination revealed multilevel ocular injury with severe bilateral corneal oedema.
View Article and Find Full Text PDFAm J Forensic Med Pathol
January 2025
County of Santa Clara, Medical Examiner-Coroner Office, San Jose, CA.
There are few reports that discuss the nebulous entity known as posttraumatic subacute meningitis. Herein, we describe a case where a male was found deceased with Streptococcus pyogenes meningitis 7 days after experiencing head trauma inflicted with a tow chain. Computed tomography scan prior to death revealed a scalp laceration with subcutaneous gas and a subdural hematoma.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Medical Biochemistry, Institute of Health, Dambi Dollo University, Dambi Dolo, Ethiopia.
Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!