Background: Histone demethylase, JMJD2A, specifically recognizes and binds to methylated lysine residues at histone H3 and H4 tails (especially trimethylated H3K4 (H3K4me3), trimethylated H3K9 (H3K9me3) and di,trimethylated H4K20 (H4K20me2, H4K20me3)) via its tandem tudor domains. Crystal structures of JMJD2A-tudor binding to H3K4me3 and H4K20me3 peptides are available whereas the others are not. Complete picture of the recognition of the four histone peptides by the tandem tudor domains yet remains to be clarified.
Methodology/principal Findings: We report a detailed molecular dynamics simulation and binding energy analysis of the recognition of JMJD2A-tudor with four different histone tails. 25 ns fully unrestrained molecular dynamics simulations are carried out for each of the bound and free structures. We investigate the important hydrogen bonds and electrostatic interactions between the tudor domains and the peptide molecules and identify the critical residues that stabilize the complexes. Our binding free energy calculations show that H4K20me2 and H3K9me3 peptides have the highest and lowest affinity to JMJD2A-tudor, respectively. We also show that H4K20me2 peptide adopts the same binding mode with H4K20me3 peptide, and H3K9me3 peptide adopts the same binding mode with H3K4me3 peptide. Decomposition of the enthalpic and the entropic contributions to the binding free energies indicate that the recognition of the histone peptides is mainly driven by favourable van der Waals interactions. Residue decomposition of the binding free energies with backbone and side chain contributions as well as their energetic constituents identify the hotspots in the binding interface of the structures.
Conclusion: Energetic investigations of the four complexes suggest that many of the residues involved in the interactions are common. However, we found two receptor residues that were related to selective binding of the H3 and H4 ligands. Modifications or mutations on one of these residues can selectively alter the recognition of the H3 tails or the H4 tails.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064570 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014765 | PLOS |
Int J Biol Macromol
December 2024
Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China. Electronic address:
Chromatin remodeling plays a pivotal role in the progression of esophageal squamous cell carcinoma (ESCC), but the precise mechanisms remain poorly understood. Here, we elucidated the critical function of staphylococcal nuclease and tudor domain-containing 1 (SND1) in modulating chromatin dynamics, thereby driving ESCC progression in both in vitro and in vivo models. Our data revealed that SND1 was markedly overexpressed in ESCC cell lines.
View Article and Find Full Text PDFACS Chem Biol
December 2024
UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a major protein lysine methyltransferase trimethylating lysine 9 on histone H3 (H3K9) which is involved in heterochromatin formation and silencing of repeat elements (REs). It contains a unique Triple Tudor Domain (3TD), which specifically binds the dual modification of H3K14ac in the presence of H3K9me1/2/3. Here, we explored the role of the 3TD H3-tail interaction for the H3K9 methylation activity of SETDB1.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI.
The house mouse X and Y chromosomes have recently acquired high copy number, rapidly evolving gene families representing an evolutionary arms race. This arms race between proteins encoded by X-linked / and Y-linked gene families can distort male offspring sex ratio, but how these proteins compete remains unknown. Here, we report how / and encoded proteins compete in a protein family-specific and dose-dependent manner using yeast.
View Article and Find Full Text PDFDevelopment
November 2024
Department of Biological Sciences, Murray State University, Murray, KY 42071, USA.
Throughout metazoa, germ cells assemble RNA-protein organelles (germ granules). In Drosophila ovaries, perinuclear nuage forms in the nurse cells, while compositionally similar polar granules form in the oocyte. A similar system appears to exist in the distantly related (∼350 million years) wasp Nasonia, with some surprising divergences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!