Can antiviral drugs contain pandemic influenza transmission?

PLoS One

National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia.

Published: March 2011

Antiviral drugs dispensed during the 2009 influenza pandemic generally failed to contain transmission. This poses the question of whether preparedness for a future pandemic should include plans to use antiviral drugs to mitigate transmission.Simulations using a standard transmission model that allows for infected arrivals and delayed vaccination show that attempts to contain transmission require relatively few antiviral doses. In contrast, persistent use of antiviral drugs when the reproduction number remains above 1 use very many doses and are unlikely to reduce the eventual attack rate appreciably unless the stockpile is very large. A second model, in which the community has a household structure, shows that the effectiveness of a strategy of dispensing antiviral drugs to infected households decreases rapidly with time delays in dispensing the antivirals. Using characteristics of past pandemics it is estimated that at least 80% of primary household cases must present upon show of symptoms to have a chance of containing transmission by dispensing antiviral drugs to households. To determine data needs, household outbreaks were simulated with 50% receiving antiviral drugs early and 50% receiving antiviral drugs late. A test to compare the size of household outbreaks indicates that at least 100-200 household outbreaks need to be monitored to find evidence that antiviral drugs can mitigate transmission of the newly emerged virus.Use of antiviral drugs in an early attempt to contain transmission should be part of preparedness plans for a future influenza pandemic. Data on the incidence of the first 350 cases and the eventual attack rates of the first 200 hundred household outbreaks should be used to estimate the initial reproduction number R and the effectiveness of antiviral drugs to mitigate transmission. Use of antiviral drugs to mitigate general transmission should cease if these estimates indicate that containment of transmission is unlikely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065466PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017764PLOS

Publication Analysis

Top Keywords

antiviral drugs
48
drugs mitigate
16
household outbreaks
16
antiviral
13
drugs
11
transmission
9
influenza pandemic
8
reproduction number
8
eventual attack
8
dispensing antiviral
8

Similar Publications

Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3.

MedComm (2020)

January 2025

Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen China.

Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time.

View Article and Find Full Text PDF

Current status of drug therapy for chronic hepatitis B.

World J Gastroenterol

January 2025

Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.

In this editorial, we comment on the article by Meng . Chronic hepatitis B (CHB) is a significant global health problem, particularly in developing countries. Hepatitis B virus (HBV) infection is one of the most important risk factors for cirrhosis and hepatocellular carcinoma.

View Article and Find Full Text PDF

Tobacco mosaic virus (TMV) is a major threat to crops, making the discovery of green biopesticides essential. Herein, we present two active ingredients derived from the medicinal plant , findlayine A () and dendrofindline B (), as promising precursor compounds for TMV inhibitors. Among them, inhibited TMV infestation on tobacco leaves at a rate of 38.

View Article and Find Full Text PDF

NRF2 Antioxidant Response and Interferon-Stimulated Genes Are Differentially Expressed in SARS-CoV-2-Positive Young Subjects.

Immun Inflamm Dis

January 2025

Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.

Background: Several respiratory viruses, including Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), suppress nuclear factor-E2-related factor-2 (NRF2) antioxidant response, generating oxidative stress conditions to its advantage. NRF2 has also been reported to regulate the innate immune response through the inhibition of the interferon (IFN) pathway. However, its modulation in younger individuals and its correlation with the IFN response remain to be elucidated.

View Article and Find Full Text PDF

Herpes zoster after left nephroureterectomy for renal carcinoma: a case report.

BMC Infect Dis

January 2025

Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Background: Diabetes and malignant tumors often lead to abnormal immune function, increasing susceptibility to herpes zoster and severe post-herpetic neuralgia. Renal insufficiency following renal cell carcinoma surgery can be compounded by treatment with nephrotoxic antiviral drugs. There have also been case reports of herpes zoster occurring at the surgical site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!