A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits. | LitMetric

Phenols are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potential antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. The objective of this study was to investigate a suitable method for determination of protocatechuic acid, 4-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferulic acid, quercetin, resveratrol and quercitrin from apricot samples. A high-performance liquid chromatograph with electrochemical and UV detectors was used. The method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The lowest limits of detection (3 S/N) using UV detection were estimated for ferulic acid (3 µM), quercitrin (4 µM) and quercetin (4 µM). Using electrochemical detection values of 27 nM, 40 nM and 37 nM were achieved for ferulic acid, quercitrin and quercetin, respectively. It follows from the acquired results that the coulometric detection under a universal potential of 600 mV is more suitable and sensitive for polyphenols determination than UV detection at a universal wavelength of 260 nm. Subsequently, we tested the influence of solvent composition, vortexing and sonication on separation efficiency. Our results showed that a combination of water, acetone and methanol in 20:20:60 ratio was the most effective for p-aminobenzoic acid, chlorgenic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, resveratrol and quercetin, in comparison with other solvents. On the other hand, vortexing at 4 °C produced the highest yield. Moreover, we tested the contents of individual polyphenols in the apricot cultivars Mamaria, Mold and LE-1075. The major phenolic compounds were chlorgenic acid and rutin. Chlorgenic acid was found in amounts of 2,302 mg/100 g in cultivar LE-1075, 546 mg/100 g in cultivar Mamaria and 129 mg/100 g in cultivar Mold. Generally, the cultivar LE-1075 produced the highest polyphenol content values, contrary to Mold, which compared to cultivar LE-1075 was quite poor from the point of view of the phenolics content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260627PMC
http://dx.doi.org/10.3390/molecules16042914DOI Listing

Publication Analysis

Top Keywords

ferulic acid
16
acid
15
acid rutin
12
chlorgenic acid
12
mg/100 cultivar
12
cultivar le-1075
12
protocatechuic acid
8
acid caffeic
8
caffeic acid
8
phenolic compounds
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!