The goal of this study was to investigate whether real-time external urethral sphincter (EUS) EMG-controlled dorsal genital nerve (DGN) stimulation can suppress undesired detrusor bladder contractions in patients with both neurogenic detrusor overactivity (NDO) and detrusor sphincter dyssynergia (DSD). Detrusor pressure (Pdet) and EUS EMG were recorded in 12 neurogenic patients who underwent two filling cystometries. The first one was without stimulation and was intended to confirm the NDO and DSD and to set the EMG detection threshold. The second one was with real-time EMG-controlled stimulation of DGNs. Two detection methods were analyzed to detect bladder contractions. The first method was a Kurtosis-scaled root mean square (RMS) detector and was used on-line. The second was a simple RMS detector and was used off-line. Of 12 patients included, 10 patients showed both NDO and DSD. In nine of these ten patients relevant EMG concomitant to detrusor activity was detected and stimulation could suppress at least one detrusor contraction. The second filling compared to the first one showed an increase of 84% in bladder capacity (p = 0.002) and a decrease of 106% in Pdet (p = 0.002). Nine false-positive detections occurred during the ten fillings with electrical stimulation. The mean increases of both time and Pdet between stimulation and bladder contraction onsets for method 1 were 1.8 s and 4 cmH(2)O and for method 2 were 0.9 s and 2 cmH(2)O, respectively. This study shows that EUS EMG can be used in real time to detect the onset of a bladder contraction. In combination with DGN stimulation has been shown to be feasible to suppress undesired bladder contractions and in turn to increase bladder capacity in subjects with both NDO and DSD.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2560/8/3/036001DOI Listing

Publication Analysis

Top Keywords

bladder contractions
12
ndo dsd
12
urethral sphincter
8
emg-controlled dorsal
8
stimulation
8
neurogenic detrusor
8
detrusor overactivity
8
dgn stimulation
8
stimulation suppress
8
suppress undesired
8

Similar Publications

Background: Detrusor underactivity (DUA) is a lower urinary tract (LUT) diagnosis that is diagnosed with multichannel urodynamic studies (UDS). The effect of voiding position and DUA detection is unclear.

Objectives: We investigated whether moving individuals from the UDS chair to their typical voiding position would more accurately assess detrusor function in cases of absent or nonrepresentative voiding.

View Article and Find Full Text PDF

Objective: Accurate measurement of pelvic floor muscle (PFM) strength is crucial for the management of pelvic floor disorders. However, the current methods are invasive, uncomfortable, and lack standardization. This study aimed to introduce a novel noninvasive approach for precise PFM strength quantification by leveraging extracorporeal surface perineal pressure (ESPP) measurements and machine learning algorithms.

View Article and Find Full Text PDF

CUOB (co-existent underactive overactive bladder) syndrome is a clinical entity that embraces storage and emptying symptoms, not strictly correlated with urodynamic findings. We assessed the differences between patients diagnosed with CUOB with/without cystocele. The study group was allocated from 2000 women who underwent urodynamic studies between 2008 and 2016.

View Article and Find Full Text PDF

The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of frog. Senegalin-2 relaxed rat bladder smooth muscle (EC 17.

View Article and Find Full Text PDF

Treatment options for recurrent high-risk non-muscle-invasive bladder cancer (HR NMIBC) and muscle-invasive bladder cancer (MIBC) are limited, highlighting a need for clinically effective, accessible, and better-tolerated alternatives. In this review we examine the clinical development program of TAR-200, a novel targeted releasing system designed to provide sustained intravesical delivery of gemcitabine to address the needs of patients with NMIBC and of those with MIBC. We describe the concept and design of TAR-200 and the clinical development of this gemcitabine intravesical system in the SunRISe portfolio of studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!