Although hematopoietic stem cell transplantation and gene therapy have the potential to cure β-thalassemia and sickle cell disease, they are not currently available to most people with these diseases. In the near term, pharmacologic induction of fetal hemoglobin (HbF) may offer the best possibility for safe, effective, and widely available therapy. In an effort to define new pathways for targeted drug development for HbF induction, we evaluated the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant response element signaling pathway. We found that 3 well-known activators of this pathway increased γ-globin mRNA at nontoxic doses in K562 cells. Tert-butylhydroquinone (tBHQ), the most active of these compounds, increased cellular levels and nuclear translocation of NRF2 and binding of NRF2 to the γ-globin promoter. siRNA knockdown of NRF2 inhibited γ-globin induction by tBHQ. When tested in human primary erythroid cells, tBHQ induced NRF2 binding to the γ-globin promoter, increased γ-globin mRNA and HbF, and suppressed β-globin mRNA and HbA, resulting in a > 3-fold increase in the percentage of HbF. These results suggest that drugs that activate the NRF2/antioxidant response element signaling pathway have the potential to induce therapeutic levels of HbF in people with β-hemoglobinopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112042 | PMC |
http://dx.doi.org/10.1182/blood-2010-10-314096 | DOI Listing |
Cancer Cell Int
January 2025
Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150001, Heilongjiang Province, China.
Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China.
Background: Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated.
Methods: We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing.
Nat Commun
January 2025
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA.
Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in male HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias.
View Article and Find Full Text PDFPlanta
January 2025
Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!