Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA-mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle- and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135355 | PMC |
http://dx.doi.org/10.1084/jem.20110105 | DOI Listing |
JMIR Res Protoc
January 2025
UK Health Security Agency, London, United Kingdom.
Background: Due to advances in treatment, HIV is now a chronic condition with near-normal life expectancy. However, people with HIV continue to have a higher burden of mental and physical health conditions and are impacted by wider socioeconomic issues. Positive Voices is a nationally representative series of surveys of people with HIV in the United Kingdom.
View Article and Find Full Text PDFHum Reprod
January 2025
Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia.
Study Question: Do polycystic ovary syndrome (PCOS), menstrual cycle phases, and ovulatory status affect reproductive tract (RT) microbiome profiles?
Summary Answer: We identified microbial features associated with menstrual cycle phases in the upper and lower RT microbiome, but only two specific differences in the upper RT according to PCOS status.
What Is Known Already: The vaginal and uterine microbiome profiles vary throughout the menstrual cycle. Studies have reported alterations in the vaginal microbiome among women diagnosed with PCOS.
Optom Vis Sci
January 2025
Department of Medical Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Significance: Epidemiological information about the epiretinal membrane is important for better clinical management and understanding of the nature and burden of this disease. There are some gaps in our understanding of the epidemiology of epiretinal membranes, particularly in Africa and the Middle East.
Purpose: This study aimed to determine the prevalence and risk factors of epiretinal membrane using spectral-domain optical coherence tomography (OCT) in an Iranian elderly population.
J Bras Nefrol
January 2025
Universidade Federal de São Paulo, Departamento de Medicina, São Paulo, SP, Brazil.
Collapsing glomerulopathy (CG) has a severe course typically associated with viral infections, especially HIV and parvovirus B19, systemic lupus erythematosus (SLE), among other etiologies. A 35-year-old woman with recent use of a JAK inhibitor due to rheumatoid arthritis presented with a 2-week history of fever, cervical adenopathy, and facial erythema. After admission, anemia, hypoalbuminemia, proteinuria, and severe acute kidney injury were noted.
View Article and Find Full Text PDFPLoS One
January 2025
Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.
Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!