A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular mechanism of cardiac hypertrophy. | LitMetric

Molecular mechanism of cardiac hypertrophy.

Jpn Circ J

Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

Published: May 1990

Pressure overload induces cardiac hypertrophy and reexpression of contractile protein isogenes. To ascertain the molecular mechanism of these events, we examined the expression of cellular oncogenes and the early change in the translational activity of specific cardiac mRNA by two-dimensional gel electrophoresis of in vitro translational products. Pressure overload increased the expression levels of c-fos, c-myc, and c-Ha-ras genes. The relative predominance of 8 species out of over 400 translational products was increased by pressure overload while that of 2 translational products was decreased. We cloned four pressure-overload-responsive cDNA clones by differential dot blot hybridization. The expression pattern of each cDNA clone in the pressure-overloaded hearts was similar to that in fetal hearts. To examine whether mechanical stimuli directly induce specific gene expression in the heart, we cultured rat neonatal cardiocytes in elastic silicone dishes and stretched these adherent cells. Myocytes stretching stimulated amino acid uptake and expression of the c-fos gene, which was blocked by protein kinase C inhibitors. These results suggest that there are some early responsive genes in cardiac hypertrophy and that mechanical loading directly stimulates gene expression possibly via protein kinase C activation.

Download full-text PDF

Source
http://dx.doi.org/10.1253/jcj.54.526DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
12
pressure overload
12
translational products
12
molecular mechanism
8
gene expression
8
protein kinase
8
expression
6
cardiac
4
mechanism cardiac
4
hypertrophy pressure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!