Numerous mapping studies have implicated genetic intervals from lupus-prone New Zealand Black (NZB) chromosomes 1 and 4 as contributing to lupus pathogenesis. By introgressing NZB chromosomal intervals onto a non-lupus-prone B6 background, we determined that: NZB chromosome 1 congenic mice (denoted B6.NZBc1) developed fatal autoimmune-mediated kidney disease, and NZB chromosome 4 congenic mice (denoted B6.NZBc4) exhibited a marked expansion of B1a and NKT cells in the surprising absence of autoimmunity. In this study, we sought to examine whether epistatic interactions between these two loci would affect lupus autoimmunity by generating bicongenic mice that carry both NZB chromosomal intervals. Compared with B6.NZBc1 mice, bicongenic mice demonstrated significantly decreased mortality, kidney disease, Th1-biased IgG autoantibody isotypes, and differentiation of IFN-γ-producing T cells. Furthermore, a subset of bicongenic mice exhibited a paucity of CD21(+)CD1d(+) B cells and an altered NKT cell activation profile that correlated with greater disease inhibition. Thus, NZBc4 contains suppressive epistatic modifiers that appear to inhibit the development of fatal NZBc1 autoimmunity by promoting a shift away from a proinflammatory cytokine profile, which in some mice may involve NKT cells.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1003426DOI Listing

Publication Analysis

Top Keywords

bicongenic mice
16
zealand black
8
mice
8
nzb chromosomal
8
chromosomal intervals
8
nzb chromosome
8
chromosome congenic
8
congenic mice
8
mice denoted
8
kidney disease
8

Similar Publications

Csf2 and Ptgs2 Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice.

Genet Epigenet

October 2015

Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA. ; Sanford-Burnham Medical Research Institute, Diabetes and Obesity Center, Lake Nona-Orlando, FL, USA. ; Florida Hospital Cancer Institute, Orlando, FL, USA.

Article Synopsis
  • The study examines how STAT5, a signaling protein, misbinds to genes involved in inflammation in monocytes from Type 1 diabetic humans.
  • Researchers used genetically modified mice (B6.NOD C11bxC1tb) to model these changes, demonstrating that specific genetic regions combined with STAT5 binding lead to altered expression of inflammatory genes CSF2 and PTGS2.
  • These modified mice showed symptoms of diabetes, such as high blood sugar and pancreatic damage, suggesting that the gene expression changes in immune cells may increase diabetes risk even in mice that are not typically prone to autoimmune diseases.
View Article and Find Full Text PDF

Previously we have shown that kallikreins (klks) play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs) as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1) gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1.

View Article and Find Full Text PDF

Introduction: Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity.

View Article and Find Full Text PDF

Background: Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.

View Article and Find Full Text PDF

Genetic loci on New Zealand Black (NZB) chromosomes 1 and 13 play a significant role in the development of lupus-like autoimmune disease. We have previously shown that C57BL/6 (B6) congenic mice with homozygous NZB chromosome 1 (B6.NZBc1) or 13 (B6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!