A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The mathematical description of the body centre of mass 3D path in human and animal locomotion. | LitMetric

The mathematical description of the body centre of mass 3D path in human and animal locomotion.

J Biomech

Department of Human Physiology, University of Milano, Via Mangiagalli 32, 20133 Milan, Italy.

Published: May 2011

Although the 3D trajectory of the body centre of mass during ambulation constitutes the 'locomotor signature' at different gaits and speeds for humans and other legged species, no quantitative method for its description has been proposed in the literature so far. By combining the mathematical discoveries of Jean Baptiste Joseph Fourier (1768-1830, analysis of periodic events) and of Jules Antoine Lissajous (1822-1880, parametric equation for closed loops) we designed a method simultaneously capturing the spatial and dynamical features of that 3D trajectory. The motion analysis of walking and running humans, and the re-processing of previously published data on trotting and galloping horses, as moving on a treadmill, allowed to obtain closed loops for the body centre of mass showing general and individual locomotor characteristics. The mechanical dynamics due to the different energy exchange, the asymmetry along each 3D axis, and the sagittal and lateral energy recovery, among other parameters, were evaluated for each gait according to the present methodology. The proposed mathematical description of the 3D trajectory of the body centre of mass could be used to better understand the physiology and biomechanics of normal locomotion, from monopods to octopods, and to evaluate individual deviations with respect to average values as resulting from gait pathologies and the restoration of a normal pattern after pharmacological, physiotherapeutic and surgical treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2011.03.014DOI Listing

Publication Analysis

Top Keywords

body centre
16
centre mass
16
mathematical description
8
trajectory body
8
closed loops
8
body
4
description body
4
centre
4
mass
4
mass path
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!