Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The detailed molecular mechanisms underlying pathogenesis of various vascular diseases such as atherosclerosis are not fully understood in type-2 diabetes. The present study was designed to investigate whether insulin regulates K(Ca)3.1 channels and participates in vasculopathy in type-2 diabetes. A rat model with experimental insulin-resistant type-2 diabetes was used for detecting pathological changes in the aorta wall, and cultured vascular smooth muscle cells (VSMCs) were employed to investigate the regulation of K(Ca)3.1 channels by insulin and roles of K(Ca)3.1 channels in cell migration and proliferation using molecular biology and electrophysiology. Early pathological changes were observed and expression of K(Ca)3.1 channels increased in the aorta wall of the type 2 diabetic rats. K(Ca)3.1 channel mRNA, protein levels and current density were greatly enhanced in cultured VSMCs treated with insulin, and the effects were countered in the cells treated with the ERK1/2 inhibitor PD98059, but not the p38-MAPK inhibitor SB203580. In addition, insulin stimulated cell migration and proliferation in cultured VSMCs, and the effects were fully reversed in the cells treated with the K(Ca)3.1 blocker TRAM-34 or PD98059, but not SB203580. These results demonstrate the novel information that insulin increases expression of K(Ca)3.1 channels by stimulating ERK1/2 phosphorylation thereby promoting migration and proliferation of VSMCs, which likely play at least a partial role in the development of vasculopathy in type-2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2011.03.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!