The N-terminal extension and phosphorylation of the myosin regulatory light chain (RLC) independently improve Drosophila melanogaster flight performance. Here we examine the functional and structural role of the RLC in chemically skinned fibers at various thick and thin filament lattice spacings from four transgenic Drosophila lines: rescued null or control (Dmlc2(+)), truncated N-terminal extension (Dmlc2(Δ2-46)), disrupted myosin light chain kinase phosphorylation sites (Dmlc2(S66A,S67A)), and dual mutant (Dmlc2(Δ2-46; S66A,S67A)). The N-terminal extension truncation and phosphorylation sites disruption mutations decreased oscillatory power output and the frequency of maximum power output in maximally Ca(2+)-activated fibers compressed to near in vivo inter-thick filament spacing, with the phosphorylation sites disruption mutation having a larger affect. The diminished power output parameters with the N-terminal extension truncation and phosphorylation sites disruption mutations were due to the reduction of the number of strongly-bound cross-bridges and rate of myosin force production, with the larger parameter reductions in the phosphorylation sites disruption mutation additionally related to reduced myosin attachment time. The phosphorylation and N-terminal extension-dependent boost in cross-bridge kinetics corroborates previous structural data, which indicate these RLC attributes play a complementary role in moving and orienting myosin heads toward actin target sites, thereby increasing fiber and whole fly power generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072621 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.02.028 | DOI Listing |
Matrix Biol
January 2025
Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:
Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biological Sciences, Chungnam National University, Daejeon, Korea.
Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).
View Article and Find Full Text PDFCommun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFUnlabelled: Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!