Aim: The aim of the present study was to show changes in salivary cortisol and chromogranin A/protein concentrations as stress markers during pregnancy and to clarify the effect of chronic stress on stress markers.
Material And Methods: Salivary samples were collected from 69 pregnant women during pregnancy. Salivary cortisol levels and chromogranin A/protein titers were determined. We surveyed the women's chronic stress using the Zung self-rating depression scale and General Health Questionnaire-28.
Results: Cortisol levels in the saliva of pregnant women showed biphasic change during pregnancy. Chromogranin A/protein levels in the saliva of pregnant women increased in the second and the early third trimesters and decreased to the puerperal period. Salivary cortisol concentrations of the chronic high stress group were significantly lower compared with those of the normal group. Salivary chromogranin A/protein concentrations of the chronic high stress group were also significantly lower than those of the normal group.
Conclusion: The titration of salivary cortisol concentrations and chromogranin A/protein levels is a useful tool to determine maternal stress levels. The elevation of cortisol and chromogranin A/protein in the saliva was suppressed in the chronic high stress group during pregnancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1447-0756.2010.01473.x | DOI Listing |
Zhonghua Bing Li Xue Za Zhi
February 2025
Departmen of Pathology, Jiangsu Province (Suqian) Hospital/Suqian First Hospital, Suqian 223800, China.
Cells
January 2025
Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany.
Neuroendocrine neoplasms (NENs) are a diverse group originating from endocrine cells/their precursors in pancreas, small intestine, or lung. The key serum marker is chromogranin A (CgA). While commonly elevated in patients with NEN, its prognostic value is still under discussion.
View Article and Find Full Text PDFOncologist
January 2025
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
Objectives: Well-differentiated neuroendocrine tumors (NET) are highly vascular tumors characterized by their expression of vascular endothelial growth factor (VEGF). This trial investigated the activity of ramucirumab, a monoclonal antibody that targets VEGF receptor-2 (VEGFR-2) and inhibits activity of VEGF, in combination with somatostatin analog therapy in patients (pts) with advanced extra-pancreatic NET.
Methods: We conducted a single-arm phase II trial enrolling pts with advanced, progressive extra-pancreatic NET.
JNCI Cancer Spectr
January 2025
Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model.
View Article and Find Full Text PDFBiophys J
January 2025
National Institute of Neurological Disorders and Stroke, Bethesda, Maryland. Electronic address:
Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β- cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle toward the center and are surrounded by a clear halo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!