Space travel exposes astronauts to a plethora of potentially detrimental conditions, such as cosmic radiation and microgravity. As both factors are hard to simulate on Earth, present knowledge remains limited. However, this knowledge is of vital importance, making space flight experiments a necessity for determining the biological effects and the underlying biochemical processes, especially when keeping future long-term interplanetary missions in mind. Instead of estimating the long-term effects, which usually implicate severe endpoints (e.g., cancer) and which are often difficult to attribute, research has shifted to finding representative biomarkers for rapid and sensitive detection of individual radiosensitivity. In this context, an appealing set of candidate markers is the group of secreted proteins, as they exert an intercellular signaling function and are easy to assess. We screened a subset of secreted proteins in cells exposed to space travel by means of multiplex bead array analysis. To determine the cell-specific signatures of the secreted molecules, we compared the conditioned medium of normal fibroblast cells to fibroblasts isolated from a patient with Hutchinson-Gilford Progeria syndrome, which are known to have a perturbed nuclear architecture and DNA damage response. Out of the 88 molecules screened, 20 showed a significant level increase or decrease, with a differential response to space conditions between the two cell types. Among the molecules that were retained, which may prove to be valuable biomarkers, are apolipoprotein C-III, plasminogen activator inhibitor type 1, β-2-microglobulin, ferritin, MMP-3, TIMP-1 and VEGF.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2010.405DOI Listing

Publication Analysis

Top Keywords

secreted proteins
12
space travel
8
space
5
multiplexed profiling
4
secreted
4
profiling secreted
4
proteins detection
4
detection potential
4
potential space
4
space biomarkers
4

Similar Publications

Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.

View Article and Find Full Text PDF

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.

View Article and Find Full Text PDF

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!