Trabecular scaffolds created using micro CT guided fused deposition modeling.

Mater Sci Eng C Mater Biol Appl

Orthopedic Research Laboratory, Department of Orthopedic Surgery, University of Arizona, Tucson AZ 85724, United States.

Published: January 2009

Free form fabrication and high resolution imaging techniques enable the creation of biomimetic tissue engineering scaffolds. A 3D CAD model of canine trabecular bone was produced via micro CT and exported to a fused deposition modeler, to produce polybutylene terephthalate (PBT) trabeculated scaffolds and four other scaffold groups of varying pore structures. The five scaffold groups were divided into subgroups (n=6) and compression tested at two load rates (49 N/s and 294 N/s). Two groups were soaked in a 25 °C saline solution for 7 days before compression testing. Micro CT was used to compare porosity, connectivity density, and trabecular separation of each scaffold type to a canine trabecular bone sample. At 49 N/s the dry trabecular scaffolds had a compressive stiffness of 4.94±1.19 MPa, similar to the simple linear small pore scaffolds and significantly more stiff (p<0.05) than either of the complex interconnected pore scaffolds. At 294 N/s, the compressive stiffness values for all five groups roughly doubled. Soaking in saline had an insignificant effect on stiffness. The trabecular scaffolds matched bone samples in porosity; however, achieving physiologic connectivity density and trabecular separation will require further refining of scaffold processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065838PMC
http://dx.doi.org/10.1016/j.msec.2006.11.010DOI Listing

Publication Analysis

Top Keywords

trabecular scaffolds
8
fused deposition
8
canine trabecular
8
trabecular bone
8
scaffold groups
8
trabecular
5
scaffolds created
4
created micro
4
micro guided
4
guided fused
4

Similar Publications

The prototype of a biomimetic multi-spiked connecting scaffold (MSC-Scaffold) represents an essential innovation in the fixation in subchondral trabecular bone of components for a new generation of entirely cementless hip resurfacing arthroplasty (RA) endoprostheses. In designing such a functional biomaterial scaffold, identifying the microstructural and mechanical properties of the host bone compromised by degenerative disease is crucial for proper post-operative functioning and long-term maintenance of the endoprosthesis components. This study aimed to explore, depending on the occurrence of obesity, changes in the microstructure and mechanical properties of the subchondral trabecular bone in femoral heads of osteoarthritis (OA) patients caused by the MSC-Scaffold embedding.

View Article and Find Full Text PDF

Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes.

View Article and Find Full Text PDF

Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone.

View Article and Find Full Text PDF

Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering.

View Article and Find Full Text PDF

In recent years, additively manufactured metallic scaffolds have generated significant interest among researchers working in the field of bone tissue engineering and orthopaedic implants. Although such intricate, porous architectures are promising as bone substitutes, they need to be thoroughly tested for structural robustness as well as their capacity for bony integration. In this present work, we introduced and preclinically evaluated the biomechanical viability of Weaire-Phelan (WP) Ti-alloy scaffolds as bone replacement components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!