Study Design: Clinical measurement.
Objective: To determine the validity and reliability of measures obtained using a custom-made device for assessing ankle dorsiflexion motion and stiffness.
Background: Limited dorsiflexion has been implicated in the evolution of foot pain in a number of clinical populations. Assessment of ankle dorsiflexion range of motion (ROM) is, therefore, commonly performed as part of a foot and ankle examination. Conventional goniometric assessment methods have demonstrated limited intertester reliability, while alternative methods of measurements are generally more difficult to use. The Iowa ankle range of motion (IAROM) device was designed in an attempt to develop a simple, clinically relevant, and time- and cost-effective tool to measure ankle dorsiflexion range of motion and stiffness.
Methods: Validity and intertester reliability of dorsiflexion range-of-motion measures using the IAROM device were assessed at 10, 15, 20, and 25 Nm of passively applied dorsiflexion torque, with both the knee extended and flexed approximately 20°. Stiffness (change in torque/change in dorsiflexion angle) values were determined using the angular change obtained between the 15- and 25-Nm torque levels. Convergent validity (n = 12) was assessed through comparison of ankle dorsiflexion angles measured simultaneously with the IAROM device and an optoelectronic motion analysis system. Intertester reliability (n = 17) was assessed by 2 testers who took measurements within the same day.
Results: Validity testing demonstrated excellent agreement (intraclass correlation coefficient [ICC] values ranging from 0.95 to 0.98). Reliability testing demonstrated good to excellent intertester agreement (ICC values ranging from 0.90 to 0.95). The ICCs for ankle joint dorsiflexion stiffness were .71 and .85 for the knee in an extended and flexed position, respectively.
Conclusion: The IAROM device provides valid and reliable measurement of ankle dorsiflexion ROM. The IAROM device also allows calculation of stiffness by measuring ROM at multiple torque levels, although the reliability of the measurement is not optimal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2519/jospt.2011.3397 | DOI Listing |
Heliyon
January 2025
Faculty of Sport Science, Ningbo University, Ningbo, 315211, China.
The long jump is an athletic event that demands speed, power, force application, and balance, with each phase being critical to overall performance. However, previous research has neglected the limiting effect of the wedge pedals on ankle dorsiflexion range of motion. This cross-sectional study investigated biomechanical changes in the lower extremities during long jumps under varying degrees of ankle dorsiflexion.
View Article and Find Full Text PDFArch Phys Med Rehabil
January 2025
Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA; Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA; Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA; Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA.
Objective: To determine whether hip flexion (HF), extension (HE), abduction (HA), knee flexion (KF) and extension (KE), and ankle plantarflexion (APF) and dorsiflexion (ADF) Maximum Voluntary Contraction (MVC) differentiates between non-fall and fall history in persons with MS (PwMS) after accounting for age, gender, fatigue, disability, and disease duration.
Design: Secondary analysis of a cross-sectional study.
Setting: Community-based comprehensive MS Center PARTICIPANTS: 172 persons with MS who completed a one-time visit INTERVENTIONS: Not applicable MAIN OUTCOME MEASURES: Lower limb (LL) MVC was measured for each muscle group as isometric peak torque (Newton-meter: Nm) of both limbs (Strongest: S; Weakest: W) using a Biodex Dynamometer and normalized by body weight (Nm/kg).
PLoS One
January 2025
Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan, Hubei Province, China.
Purpose: Previous studies have demonstrated significant biomechanical differences between individuals with chronic ankle instability (CAI) and healthy controls during the Y-balance test. This study aimed to examine the effects of kinesio taping (KT) on lower limb biomechanical characteristics during the Y-balance anterior reach task in individuals with CAI.
Methods: A total of 30 participants were recruited, comprising 15 individuals with CAI and 15 healthy controls.
Scand J Med Sci Sports
January 2025
Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.
View Article and Find Full Text PDFJpn J Compr Rehabil Sci
December 2024
Department of Rehabilitation Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
Unlabelled: Yamaguchi A, Kanazawa Y, Hirano S, Aoyagi Y. A Case with Left Hemiplegia after Cerebral Infarction with Improved Walking Ability Through Robot-assisted Gait Training Combined with Neuromuscular Electrical Stimulation for Foot Drop. Jpn J Compr Rehabil Sci 2024; 15: 88-93.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!