A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel approach for estimating the relationship between the kinetics and thermodynamics of glycoside hydrolases. | LitMetric

A novel approach for estimating the relationship between the kinetics and thermodynamics of glycoside hydrolases.

Acta Biochim Biophys Sin (Shanghai)

State Key Laboratory of Microbial Technology, Shandong University, Ji'nan 250100, China.

Published: May 2011

A series of experiments were performed, in which p-nitrophenyl-β-D-cellobioside (PNPC) was hydrolyzed by 1, 4-β-D-glucan-cellobiohydrolase (CBHI: EC 3.2.1.91), and O-nitrophenyl-β-D-galactoside (ONPG) was hydrolyzed by β-galactosidase (EC 3.2.1.23) under different combinations of temperature and time period. The combined effects of temperature and time on p-nitrophenyl and O-nitrophenyl formation were characterized as the change of the instantaneous reaction velocity occurrence per temperature range termed as v(inst)· T(-1). This parameter was used as a stable index to evaluate the apparent activation energy (E(a)) based on the Arrhenius approach, instead of the reaction velocity constant, k. It was found that E(a) for PNPC hydrolysis by CBHI first decreased with temperature increase and then slightly increased at higher temperature, and its minimum value was obtained just at the maximum point of v(inst). In addition, E(a) for PNPC hydrolysis by dilute sulfuric acid was not a constant, but was continuously increased with temperature. The present studies demonstrated that E(a) obtained by Arrhenius approach for the hydrolysis reaction of β-hydrolases appears to be only an empirical kinetic parameter for the dependence of the reaction velocity on temperature and time, and has no meaning in the sense of thermodynamic energy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/abbs/gmr014DOI Listing

Publication Analysis

Top Keywords

temperature time
12
reaction velocity
12
arrhenius approach
8
pnpc hydrolysis
8
temperature
7
novel approach
4
approach estimating
4
estimating relationship
4
relationship kinetics
4
kinetics thermodynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!