England was the first European country to pursue a systematic policy to reduce socio-economic inequalities in health. This paper assesses whether this strategy has worked, and what lessons can be learnt. A review of documents was conducted, as well as an analysis of entry-points chosen, specific policies chosen, implementation of these policies, changes in intermediate outcomes, and changes in final health outcomes. Despite some partial successes, the strategy failed to reach its own targets, that is, a 10% reduction in inequalities in life expectancy and infant mortality. This is due to the fact that it did not address the most relevant entry-points, did not use effective policies and was not delivered at a large enough scale for achieving population-wide impacts. Health inequalities can only be reduced substantially if governments have a democratic mandate to make the necessary policy changes, if demonstrably effective policies can be developed, and if these policies are implemented on the scale needed to reach the overall targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jech.2010.128280 | DOI Listing |
Background: In Nigeria, men constitute over half of the people notified with tuberculosis (TB), experience longer delays before reaching care, and are estimated to account for two thirds of people who miss out on care. The higher TB risk and burden in men has implications for the whole population and reaching them earlier with TB services will reduce onward transmission in households, communities, and workplaces. The absence of a comprehensive guidance and the lack of substantial empirical evidence on TB care approaches that are responsive to the needs of men in Nigeria exacerbates this problem.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.
View Article and Find Full Text PDFHered Cancer Clin Pract
January 2025
Department of Population Health Sciences, Geisinger, Danville, PA, 17822, USA.
Behav Brain Res
January 2025
Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany; Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany.
Background: The three-class oddball paradigm allows to investigate the processing of behaviorally relevant and irrelevant auditory stimuli. In humans, event-related potentials (ERPs) are used as neural correlate of behavior. We recorded local field potentials (LFPs) within the medial prefrontal cortex (mPFC) in rats during three-class and passive two-class oddball paradigms and analyzed the ERPs focusing on similarities to human recordings.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics, Northeastern University, Boston, MA, 02115, USA. Electronic address:
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!