There have been increasing reports on the adverse reactions associated with herbal consumption. For many of these adverse reactions, the underlying biochemical mechanisms are unknown, but bioactivation of herbal compounds to generate reactive intermediates have been implicated. This minireview updates our knowledge on metabolic activation of herbal compounds, molecular targets and the toxicity relevance. A number of studies have documented that some herbal compounds can be converted to toxic or even carcinogenic metabolites by Phase I [e.g. cytochrome P450s (CYPs)] and less frequently by Phase II enzymes. For example, aristolochic acids (AAs) in Aristolochia spp, which undergo reduction of the nitro group by hepatic CYP1A1/2 or peroxidases in extrahepatic tissues to generate highly reactive cyclic nitrenium ions. The latter can react with macromolecules (DNA and protein), resulting in activation of H-ras and myc oncogenes and gene mutation in renal cells and finally carcinogenesis of the kidneys. Teucrin A and teuchamaedryn A, two diterpenoids found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming herbal supplements that caused severe hepatotoxicity, are converted by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase and inactivate them. Some naturally occurring alkenylbenzenes (e.g. safrole, methyleugenol and estragole) and flavonoids (e.g. quercetin) can undergo bioactivation by sequential 1-hydroxylation and sulfation, resulting in reactive intermediates capable of forming DNA adducts. Extensive pulegone metabolism generated p-cresol that is a glutathione depletory. The hepatotoxicity of kava is possibly due to intracellular glutathione depletion and/or quinone formation. Moreover, several herbal compounds including capsaicin from chili peppers, dially sulfone in garlic, methysticin and dihydromethysticin in kava, oleuropein in olive oil, and resveratrol found in grape seeds are mechanism-based (suicide) inhibitors of various CYPs. Together with advances of proteomics, metabolomics and toxicogenomics, an integrated systems toxicological approach may provide deep insights into mechanistic aspects of herb-induced toxicities, and contribute to bridging the relationships between herbal bioactivation, protein/DNA adduct formation and the toxicological consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2011.03.016DOI Listing

Publication Analysis

Top Keywords

herbal compounds
16
herbal
8
herbal bioactivation
8
molecular targets
8
targets toxicity
8
toxicity relevance
8
adverse reactions
8
reactive intermediates
8
bioactivation molecular
4
relevance increasing
4

Similar Publications

The discovery of novel counteractive pharmaceuticals, which have recently generated much interest, has played a significant role in the development of drugs derived from herbal medicines or botanical sources. Paederia foetida (P. foetida) is one such example of a role in both traditional and traditional medicine.

View Article and Find Full Text PDF

Compound 38, a novel potent and selective antagonist of adenosine A receptor, enhances arousal in mice.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China.

Adenosine A receptor (AR) plays a pivotal role in the regulation of sleep-wake behaviors. We previously reported an AR selective antagonist compound 38 with an IC value of 29.0 nM.

View Article and Find Full Text PDF

Chronic pain lasting more than three months or persisting after normal healing is a significant global health issue. In a healthcare system, it is crucial to ensure proper chronic pain management. Traditional pharmacological and non-pharmacological pain management techniques may not fully meet the requirements of physicians regarding effectiveness and safety.

View Article and Find Full Text PDF

Aims: Enterococcus faecium is one of the most important opportunistic pathogens threatening human health worldwide. Resistance to vancomycin (VAN) is increasing at an alarming rate. Resurrecting antibiotics using a combination approach is a promising alternative avenue.

View Article and Find Full Text PDF

Mechanism of Traditional Chinese medicine extract in the treatment of diabetic erectile dysfunction.

J Ethnopharmacol

January 2025

Department of Integrative Medicine and Andrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China. Electronic address:

Ethnopharmacological Relevance: Diabetic erectile dysfunction (DED) is a prevalent but often overlooked microvascular complication of type 2 diabetes mellitus (T2DM), with strong associations to cardiovascular disease. The pathophysiology of erectile dysfunction (ED) in T2DM patients is more intricate than in non-diabetic individuals, likely involving multiple pathogenic mechanisms such as endothelial dysfunction, vascular alterations, neuropathy, and oxidative stress. Traditional Chinese Medicine (TCM) has long been utilized in the management of DED, drawing on an extensive body of clinical experience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!