Widely used in different biomedical applications, polyelectrolyte multilayers provide inter alia an attractive way for manufacturing of bio-functionalized, stimuli responsive surface coatings to control cellular behavior. In this study a novel polyelectrolyte-based platform for the engineering and controllable detachment of human mesenchymal stem cell (MSC) sheets is presented. Thin films obtained by layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(styrene sulfonate) (PSS) polyelectrolytes on conductive indium tin oxide (ITO) electrodes allowed for the fast formation of viable sheets from human placenta-derived mesenchymal stem cells (PD-MSCs). Resulting stem cell sheets retained their phenotypical profile and mesodermal differentiation potency. Both electrochemically-induced local pH lowering and global decrease of the environmental pH allowed for a rapid detachment of intact stem cell sheets. The recovered stem cell sheets remained viable and maintained their capacity to differentiate toward the adipogenic and osteogenic lineages. This novel polyelectrolyte multilayer based platform represents a promising, novel approach for the engineering of human stem cell sheets desired for future clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2011.02.058 | DOI Listing |
J Cell Sci
January 2025
Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.
Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states.
View Article and Find Full Text PDFRecent Adv Drug Deliv Formul
January 2025
Central Laboratory, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China.
Exosomes are nanoscale extracellular vesicles with various biological activities that can accelerate wound healing by regulating inflammatory responses, promoting cell proliferation and angiogenesis, and other mechanisms. Among them, plant and animal exosomes have demonstrated unique advantages due to their biological characteristics. Plant exosomes have gradually become a research hotspot due to their wide source, high biosafety, and low production cost, demonstrating significant pro-healing potential.
View Article and Find Full Text PDFIntroduction: Chronic ischemic heart failure is a major global health issue despite advancements in therapy. Stem cell (SC) therapy has emerged as a potential treatment, but its effectiveness remains uncertain. This study aimed to systematically review and meta-analyze the current evidence on SC therapy's efficacy.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, P.R. China.
Garlic has been consumed globally as a functional food and traditional medicine for various ailments. Its active organosulfur compounds (OSCs) have demonstrated significant anticancer properties, particularly against gastric cancer. However, a comprehensive review of these effects and the underlying molecular mechanisms, including their role in overcoming drug resistance, is currently lacking.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
January 2025
Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Since there is currently no cure for amyotrophic lateral sclerosis (ALS), it is essential to search for diagnostic biomarkers and novel treatments to reduce the severity of this disease. One of these treatment approaches is stem cell transplantation.
Objective: This study aims to evaluate the safety and efficacy of repeated transplantation of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with ALS by analyzing clinical and molecular data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!