Nanosizing techniques are important tools for improving the bioavailability of water insoluble drugs. Here, a rapid wet milling method was employed to prepare nanosuspensions: 4 types of stabilizers at 4 different concentrations were tested on 2 structurally different drug compounds: indomethacin and itraconazole. Photon correlation spectroscopy (PCS) results showed that the finest nanosuspensions were obtained when 80 wt% (to drug amount) pluronic F68 was the stabilizer for indomethacin and 60 wt% pluronic F127 for itraconazole. Compared to physical mixtures, dissolution rates of the nanosuspensions showed significant increases. The morphology of nanoparticles was observed by transmission electron microscopy (TEM). Crystalline state of the drugs before and after milling was confirmed using differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The physical and chemical stabilities of the nanosuspensions after storage for 2 months at room temperature and at 4°C were investigated using PCS, TEM and HPLC. No obvious changes in particle size and morphology and no chemical degradation of the drug ingredients were seen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2011.03.050 | DOI Listing |
J Pharm Sci
December 2024
Drug Product Development, Medicine Development & Supply, GSK R&D, Collegeville, PA 19426, USA. Electronic address:
This study determined process conditions under which polystyrene (CPS) and zirconia (YSZ) beads cause similar breakage kinetics and temperature rise during manufacturing of drug nanosuspensions via wet bead milling and explored relative advantages of CPS beads, particularly for stress-sensitive compounds. Besides temperature and particle size measurements, a microhydrodynamic-based kinetic model simulated the conditions for CPS to achieve breakage rates equivalent to those of YSZ. A power law correlation was applied to find conditions conducive to temperature equivalency.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Five carbide powders, TiC, CrC, ZrC, NbC and SiC, were selected as raw materials and mixed by dry or wet milling. Then (TiCrZrNb)C-SiC multiphase ceramics were successfully prepared by spark plasma sintering (SPS) at 1900 °C, using D-HECs-1900 (dry milling method) and W-HECs-1900 (wet milling method), respectively. In this study, the effects of the ball milling method on the microstructure and mechanical properties of the multiphase high-entropy ceramics were systematically investigated.
View Article and Find Full Text PDFInt J Pharm X
December 2024
Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
In pharmaceutical manufacturing, integrating model-based design and optimization can be beneficial for accelerating process development. This study explores the utilization of Machine Learning (ML) techniques as a surrogate model for the optimization of a three-unit wet-granulation based flowsheet model for solid dosage form manufacturing. First, a reduced representation of a wet granulation flowsheet model is developed, incorporating a granulation and milling process, along with a novel dissolution model that accounts for the effect of particle size, porosity, and microstructure on dissolution rate.
View Article and Find Full Text PDFJ Food Prot
December 2024
Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:
Corn wet milling (CWM) and corn starch flash drying processing conditions reduce undesirable microorganisms, such as Salmonella. Finished products are historically safe, with intrinsic properties such as low water activity inhibiting microbial growth. Corn processors could use quantified levels of reduction in this study of Salmonella surrogate Enterococcus faecium (E.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55 5230, Odense, Denmark. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!