Surface biofouling poses an increasing problem in industrial and health care applications, driving research for surface coatings to prevent anti-microbial colonization and characterization of the efficacy of the same. The diversity and increasing sophistication of such coatings, which postulate different types of anti-microbial action on planktonic and surface adhering bacteria, challenge the suitability of current approaches to evaluate and compare the different approaches as well as the speed and accuracy at which screening can be made. We describe and provide proof of principle for a method to use microparticles functionalized with molecular coatings through self-assembly together with flow cytometry readout to evaluate Escherichia coli bacteria surface adhesion and killing efficiency. Advantages of the method are the automation of the method that allows recording an immense number of interactions and the possibility to simultaneously record effects on both surface adhering and planktonic bacteria. We demonstrate and discuss design criteria to obtain this information on two coatings, poly(L-lysine)-graft-C(3)H(6)N(+)(CH(3))(2)C(12)H(25) (PLL-g-QAC) and poly(L-lysine)-graft-poly(ethylene glycol)-C(3)H(6)N(+)(CH(3))(2)C(12)H(25) (PLL-g-PEG-QAC), which exemplify two different approaches to creating anti-microbial interfaces. Despite an apparent higher killing efficiency of the PLL-g-QAC during brief exposures, the rapid fouling of that surface quickly reduces its efficiency, whereas the PLL-g-PEG-QAC coating showed greater promise in reducing the growth and interfacial colonization of bacteria over longer time scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2011.02.063 | DOI Listing |
Breast Cancer Res
January 2025
Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
Cancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Inflammation
January 2025
Department of Otorhinolaryngology, Dankook University College of Medicine, 201 Manghyang-Ro, Dongnam-Gu, Cheonan, 31116, Republic of Korea.
During nasal polyp (NP) development, activated T cells differentiate into T helper (Th) 1, Th2, and Th17 cells. Additionally, regulatory T cells (Tregs) that have an immune suppressive function are involved in the pathophysiology of chronic rhinosinusitis (CRS) with NP (CRSwNP). Tregs can act as effector cells that produce inflammatory cytokines, such as interleukin (IL)-17A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!