A novel plasma immersion ion implantation technique based on high power pulsed magnetron sputtering (HPPMS) discharge that can produce a high density metal plasma is described. The metal plasma is clean and does not suffer from contamination from macroparticles, and the process can be readily scaled up for industrial production. The hardware, working principle, and operation modes are described. A matching circuit is developed to modulate the high-voltage and HPPMS pulses to enable operation under different modes such as simultaneous implantation and deposition, pure implantation, and selective implantation. To demonstrate the efficacy of the system and technique, CrN films with a smooth and dense surface without macroparticles were produced. An excellent adhesion with a critical load of 59.9 N is achieved for the pure implantation mode.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3565175DOI Listing

Publication Analysis

Top Keywords

novel plasma
8
plasma immersion
8
immersion ion
8
ion implantation
8
implantation deposition
8
technique based
8
based high
8
high power
8
power pulsed
8
pulsed magnetron
8

Similar Publications

A novel LC-MS/MS assay for low concentrations of creatinine in sweat and saliva to validate biosensors for continuous monitoring of renal function.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Clinical Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands; Department of Biomedical Engineering, Chemical Biology, Eindhoven University of Technology, Groene Loper 3, Eindhoven 5612 AE, The Netherlands.

Monitoring of kidney function traditionally relies on plasma creatinine concentrations, necessitating invasive blood draws. Non-invasively obtainable biofluids, such as sweat and saliva, present a patient-friendly alternative with potential for continuous monitoring. This study focusses on developing and validating a novel Liquid Chromatography- tandem Mass Spectrometry (LC-MS/MS) assay as a reference test for measuring low creatinine concentrations in sweat and saliva.

View Article and Find Full Text PDF

A novel strategy based on the dielectric barrier discharge plasma for rapid elimination of the carryover associated with μPESI-MS/MS system.

J Pharm Anal

November 2024

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.

Image 1.

View Article and Find Full Text PDF

Introduction: Ovarian cancer is a lethal disease with low survival rates for women diagnosed in advanced stages. Current cancer immunotherapies are not efficient in ovarian cancer, and there is therefore a significant need for novel treatment options. The β-galactoside-binding lectin, Galectin-3, is involved in different immune processes and has been associated with poor outcome in various cancer diagnoses.

View Article and Find Full Text PDF

Background: Recurrent spontaneous abortion (RSA) is intricately linked to metabolic dysregulation at the maternal-fetal interface during early gestation. Abnormal levels of essential fatty acids and downstream oxylipins in decidua and chorionic villi have been identified as potential risk factors for RSA. Oxylipins have been linked to excessive inflammation, which might disrupt maternal-fetal immune tolerance, potentially contributing to RSA.

View Article and Find Full Text PDF

Background & Aims: The progression of chronic liver disease (CLD) is characterized by excessive extracellular matrix deposition, disrupting hepatic architecture and function. Upon liver injury, hepatic stellate cells (HSCs) differentiate towards myofibroblasts and become inflammatory, proliferative and fibrogenic. To date, it is still unclear whether HSC activation is driven by similar mechanisms in different aetiologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!