A series of charge-reversal lipids were synthesized that possess varying chain lengths and end functionalities. These lipids were designed to bind and then release DNA based on a change in electrostatic interaction with DNA. Specifically, a cleavable ester linkage is located at the ends of the hydrocarbon chains. The DNA release from the amphiphile was tuned by altering the length and position of the ester linkage in the hydrophobic chains of the lipids through the preparation of five new amphiphiles. The amphiphiles and corresponding lipoplexes were characterized by DSC, TEM, and X-ray, as well as evaluated for DNA binding and DNA transfection. For one specific charge-reversal lipid, stable lipoplexes of approximately 550 nm were formed, and with this amphiphile, effective in vitro DNA transfection activities was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878859PMC
http://dx.doi.org/10.1021/bc1004526DOI Listing

Publication Analysis

Top Keywords

ester linkage
8
dna transfection
8
dna
7
synthesis characterization
4
characterization vitro
4
vitro transfection
4
transfection activity
4
activity charge-reversal
4
charge-reversal amphiphiles
4
amphiphiles dna
4

Similar Publications

Ten new resin glycosides, ipoalbins I-X, from Ipomoea alba seeds.

J Nat Med

December 2024

School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, 861-2205, Japan.

Ipomoea alba L. (Convolvulaceae) is an annual vine native to tropical America that is cultivated primarily for ornamental purposes. Its seeds are used in traditional medicine as a laxative, and young shoots are consumed as food.

View Article and Find Full Text PDF

D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention.

J Control Release

December 2024

School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:

Article Synopsis
  • New multipurpose prevention technologies for women prioritize reducing HIV risks and preventing unwanted pregnancies, promoting greater sexual health choices.
  • A novel long-acting injectable platform combines the HIV drug MIV-150 and the contraceptive etonogestrel using a specially designed D-peptide that forms a drug-releasing hydrogel after injection.
  • The technology shows promising biostability, low toxicity, and sustained delivery of both drugs in animal models for nearly 50 days, indicating its potential for effective long-term use.
View Article and Find Full Text PDF

Harnessing the unique optical properties of chirality-enriched single-walled carbon nanotubes (SWCNTs) is the key to unlocking the application of SWCNTs in photonics. Recently, it has been discovered that chemical modification of SWCNTs greatly increases their potential in this context. Despite the dynamic progress in this area, the mechanism of the chemical modification of SWCNTs and the impact of the reaction conditions on the properties of the obtained functional nanomaterials remain unclear.

View Article and Find Full Text PDF

Tunable redox-sensitive polymeric-lipid hybrid nanocarriers (RS-PLHNCs) were fabricated using homogenization and nanoprecipitation methods. These nanocarriers were composed of novel redox-cholesterol with disulfide linkages and synthesized by conjugating cholesterol with dithiodipropionic acid esterification. Berberine (BBR) was loaded into the fabricated nanocarriers to investigate the selective uptake of BBR by cancer cells as well as its release and enhanced cytotoxicity.

View Article and Find Full Text PDF

Hydroxyl-based acid-hypersensitive acetal ester bond: Design, synthesis and the application potential in nanodrugs.

Eur J Med Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:

Article Synopsis
  • Targeted drug delivery systems are utilizing the acidic environment of tumors to improve drug stability and reduce toxicity through modifications like hydroxyl groups.
  • A newly developed "acetal ester bond" offers a highly sensitive and easy-to-synthesize linkage that allows for efficient drug release specifically in acidic conditions while maintaining stability in healthy physiological environments.
  • The acetal ester bond-based paclitaxel conjugate (PTX-COU) demonstrated superior tumor growth inhibition in experiments, suggesting its potential for enhancing targeted drug delivery and minimizing systemic side effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!