Fabrication of MnSi1.73 thermoelectric material by mechanical alloying.

J Nanosci Nanotechnol

Department of Advanced Materials Science and Engineering, Mokpo National University, Muan-gun, Chonnam 534-729, Korea.

Published: February 2011

The effect of mechanical alloying (MA) on the formation of MnSi1.73 thermoelectric compound was investigated. Due to the observed larger loss of Si relative to Mn during MA, the starting composition of Mn-Si was modified to MnSi1.83 and MnSi1.88. Sintering was performed in a spark plasma sintering (SPS) machine up to 600-800 degrees C under 50 MPa. The single phase MnSi1.73 has been obtained by MA of MnSi1.88 mixture powders for 200 h. It is also found that the grain size of MnSi1.73 compound analyzed by Hall plot method is reduced to 40 nm after 200 h of milling. Additionally, X-ray diffraction data shows that the SPS compact from 200 h MA powders consolidated at 600 degrees C consists of only nanocrystalline MnSi1.73 compound with a grain size of 90 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.3349DOI Listing

Publication Analysis

Top Keywords

mnsi173 thermoelectric
8
mechanical alloying
8
grain size
8
mnsi173 compound
8
fabrication mnsi173
4
thermoelectric material
4
material mechanical
4
alloying mechanical
4
alloying formation
4
mnsi173
4

Similar Publications

BiTe, a member of the (Bi2)m(Bi2Te3)n homologous series, possesses natural van der Waals-like heterostructure with a Bi2 bilayer sandwiched between the two [Te-Bi-Te-Bi-Te] quintuple layers. BiTe exhibits both the quantum states of weak topological and topological crystalline insulators, making it a dual topological insulator and a suitable candidate for spintronics, quantum computing and thermoelectrics. Herein, we demonstrate that the chemical bonding in BiTe is to be metavalent, which plays a significant role in the pressure dependent change in the topology of the electronic structure Fermi surface.

View Article and Find Full Text PDF

Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.

View Article and Find Full Text PDF

A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-CN) is a useful photocatalyst applied in various areas. However, it has some disadvantages that limit its applications. Therefore, doping and the construction of a heterojunction are beneficial methods to overcome these drawbacks.

View Article and Find Full Text PDF

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!