CO2-mediated synthesis of ZnO nanorods and their application in sensing ethanol vapor.

J Nanosci Nanotechnol

Beijing National Laboratory for Molecular Sciences (BNLMS), Centre for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China.

Published: February 2011

High-purity ZnO nanorods have been synthesized via a two-step route using zinc acetate as a precursor without any surfactant and additive. In this method, ZnCO3 fibers were first formed in the CO2-ethanol solution, which directed the formation of ZnO nanorods by subsequent treatment in KOH aqueous solution. The as-prepared nanorods were fully characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Fourier transform Infrared spectroscopy. It was found that the as-obtained ZnO nanorods were single crystals with uniform diameter around 150 nm and length of 4 microm. The nanorod crystals were prismatic with hexagonal cross sections, consistent with the wurtzite lattice structure. Moreover, the sensing properties of the as-prepared ZnO nanorods were also investigated. It was demonstrated that they exhibited good performance for detecting ethanol vapor even at 380 and 250 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.3087DOI Listing

Publication Analysis

Top Keywords

zno nanorods
20
ethanol vapor
8
electron microscopy
8
nanorods
6
zno
5
co2-mediated synthesis
4
synthesis zno
4
nanorods application
4
application sensing
4
sensing ethanol
4

Similar Publications

Article Synopsis
  • New optoelectronic devices are emerging from the use of memristors that can be modulated with light, benefiting fields like computer vision and artificial intelligence.
  • The study features memristors made from a hybrid material of zinc oxide nanorods and PMMA, which do not need a forming step and show effective electronic switching.
  • These devices can switch with UV light and demonstrate notable memory capabilities, enabling applications in neural networks and neuromorphic computing due to their unique photonic synaptic functions.
View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .

View Article and Find Full Text PDF

Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).

View Article and Find Full Text PDF

Role of en-APTAS Membranes in Enhancing the NO Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors.

Biosensors (Basel)

December 2024

Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!