Whole body vibration (WBV) may enhance muscular strength and power but little is known about its influence on sensory-motor function. Vibration of a single muscle or tendon affects the afferent system in a manner that depends on amplitude and frequency. WBV stimulates many muscle groups simultaneously and the frequencies and amplitudes used are different from many of the studies on single musculotendinous units. We investigated the effects of WBV at two amplitudes on balance, joint position sense (JPS) and cutaneous sensation in young healthy subjects. Eighteen adults (24.3 ± 1.5 years, 15 females) were assessed before WBV (five 1 min bouts, 30 Hz) then immediately, 15 and 30 min afterwards. Two amplitudes (4 and 8 mm peak to peak) were investigated on different occasions. Standing balance was assessed with feet together and eyes closed, and standing on one leg with eyes open and closed. JPS at the knee and ankle was assessed by repositioning tasks while cutaneous sensation was recorded from six sites in the lower limb using pressure aesthesiometry. Neither amplitude affected JPS (P > 0.05). There were minimal effects on balance only in the vertical plane and only 30 min after WBV (P < 0.05). Low amplitude vibration only reduced sensation at the foot and ankle immediately after WBV (P < 0.008). High amplitude vibration impaired sensation at the foot, ankle and posterior shank for the entire test period (P < 0.008). In young healthy individuals WBV did not affect JPS or static balance, but reduced cutaneous sensation. These data may have implications for older and clinical populations with compromised postural control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-011-1943-y | DOI Listing |
J Physiol Sci
January 2025
Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan.
Human skin, as a sophisticated sensory organ, is able to detect subtle changes in ambient temperature. This thermosensory capability is primarily mediated by temperature-sensitive TRP channels expressed in both sensory neurons and keratinocytes. Among these, TRPV3, which responds to warm temperatures and plays a crucial role in various skin functions, is particularly notable.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.
Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.
View Article and Find Full Text PDFNeurobiol Pain
December 2024
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
Thermosensory signals may contribute to the sense of body ownership, but their role remains highly debated. We test this assumption within the framework of pathological body ownership, hypothesising that skin temperature and thermoception differ between right-hemisphere stroke patients with and without Disturbed Sensation of Ownership (DSO) for the contralesional plegic upper limb. Patients with DSO exhibit lower basal hand temperatures bilaterally and impaired perception of cold and warm stimuli.
View Article and Find Full Text PDFTrop Med Int Health
January 2025
Programa de Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
Objectives: The purpose of this study was to determine reference points for thermal perception in cutaneous lesions of leprosy, a disease caused by Mycobacterium leprae characterised by hypoesthesia in skin lesions due to nerve and Schwann cell infection. Early diagnosis is essential to control transmission and effectively treat the disease.
Methods: Quantitative thermal testing (QTT) has been proposed as a valuable tool for early detection of the disease, initiation of treatment, and monitoring of nerve damage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!