Lipophilic energy transfer cassettes like 1 and 2 are more conveniently synthesized than the corresponding hydrophilic compounds, but they are not easily used in aqueous media. To overcome the latter issue, cassettes 1 and 2 were separately encapsulated in silica nanoparticles (ca. 22 nm) which freely disperse in aqueous media. Photophysical properties of the encapsulated dyes 1-SiO(2) and 2-SiO(2) were recorded. The nanoparticles 1-SiO(2) permeated into Clone 9 rat liver cells and targeted only the ER. A high degree of energy transfer was observed in this organelle such that most of the light fluoresced from the acceptor part, i.e. the particles appeared red. Silica nanoparticles 2-SiO(2) also permeated into Clone 9 rat liver cells and they targeted mitochondria but were also observed in endocytic vesicles (lysosomes or endosomes). In these organelles they fluoresced red and red/green respectively. Thus the cargo inside the nanoparticles influences where they localize in cells, and the environment of the nanoparticles in the cells changes the fluorescent properties of the encapsulated dyes. Neither of these findings were anticipated given that silica nanoparticles of this type are generally considered to be non-porous.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0ob00967aDOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
16
energy transfer
12
transfer cassettes
8
aqueous media
8
properties encapsulated
8
encapsulated dyes
8
permeated clone
8
clone rat
8
rat liver
8
liver cells
8

Similar Publications

The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.

View Article and Find Full Text PDF

Boehmite nanoparticles and NaY nanozeolite were synthesized by co-precipitation and hydrothermal methods, respectively, and characterized by XRD, FT-IR, TG-DTA, BET, and SEM techniques. XRD and BET analyses demonstrated the formation of boehmite nanoparticles with a surface area of 350 m/g and high crystallinity NaY nanozeolite with a surface area of 957 m/g. In order to evaluate the effect of the content of the mesoporous boehmite nanoparticles on the catalytic performance of the Residue Fluid Catalytic Cracking (RFCC) catalyst, alumina active matrix-based and silica inactive matrix-based catalysts were prepared.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.

View Article and Find Full Text PDF

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!