Our understanding of the mechanism by which the E3-19K protein from adenovirus (Ad) targets major histocompatibility complex (MHC) class I molecules for retention in the endoplasmic reticulum is derived largely from studies of Ad serotype 2 (subgroup C). It is not well understood to what extent observations on the Ad2 E3-19K/MHC I association can be generalized to E3-19K proteins of other serotypes and subgroups. The low levels of amino acid sequence homology between E3-19K proteins suggest that these proteins are likely to manifest distinct MHC I binding properties. This information is important as the E3-19K/MHC I interaction is thought to play a critical role in enabling Ads to cause persistent infections. Here, we characterized interaction between E3-19K proteins of serotypes 7 and 35 (subgroup B), 5 (subgroup C), 37 (subgroup D), and 4 (subgroup E) and a panel of HLA-A, -B, and -C molecules using native gel, surface plasmon resonance (SPR), and flow cytometry. Results show that all E3-19K proteins exhibited allele specificity toward HLA-A and -B molecules; this was less evident for Ad37 E3-19K. The allele specificity for HLA-A molecules was remarkably similar for different serotypes of subgroup B as well as subgroup C. Interestingly, all E3-19K proteins characterized also exhibited MHC I locus specificity. Importantly, we show that Lys(91) in the conserved region of Ad2 E3-19K targets the C terminus of the α2-helix (MHC residue 177) on MHC class I molecules. From our data, we propose a model of interaction between E3-19K and MHC class I molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093838PMC
http://dx.doi.org/10.1074/jbc.M110.212050DOI Listing

Publication Analysis

Top Keywords

e3-19k proteins
24
class molecules
16
proteins serotypes
12
mhc class
12
subgroup subgroup
12
hla-a molecules
12
e3-19k
9
serotypes subgroups
8
major histocompatibility
8
subgroup well
8

Similar Publications

Major histocompatibility complex class I (MHC-I) molecules play a critical role in the host's antiviral response by presenting virus-derived antigenic peptides to cytotoxic T lymphocytes (CTLs), enabling the clearance of virus-infected cells. Human adenoviruses evade CTL-mediated cell lysis, in part, by interfering directly with the MHC-I antigen presentation pathway through the expression of E3-19K, which binds both MHC-I and the transporter associated with antigen processing protein and sequestering MHC-I within the endoplasmic reticulum. Fowl adenoviruses have no homologues of E3-19K.

View Article and Find Full Text PDF

Persistent viruses cause chronic disease, and threaten the lives of immunosuppressed individuals. Here, we elucidate a mechanism supporting the persistence of human adenovirus (AdV), a virus that can kill immunosuppressed patients. Cell biological analyses, genetics and chemical interference demonstrate that one of five AdV membrane proteins, the E3-19K glycoprotein specifically triggers the unfolded protein response (UPR) sensor IRE1α in the endoplasmic reticulum (ER), but not other UPR sensors, such as protein kinase R-like ER kinase (PERK) and activating transcription factor 6 (ATF6).

View Article and Find Full Text PDF

Human adenoviruses (HAdVs) are widespread pathogens that cause a number of partially overlapping, species-specific infections associated with respiratory, urinary, gastrointestinal, and ocular diseases. The early 3 (E3) region of adenoviruses is highly divergent between different species, and it encodes a multitude of proteins with immunomodulatory functions. The study of genetic diversity in the E3 region offers a unique opportunity to gain insight into how the various HAdVs have evolutionarily adapted in response to the selection pressures exerted by host immune defenses.

View Article and Find Full Text PDF

Cancer vaccine design to effectively eliminate tumors requires triggering strong immune reactions to elicit long-lasting humoral and cellular immunity and DNA vaccines have been demonstrated to be an attractive immunotherapeutic approach. The tumor-associated antigen L6 (TAL6) is overexpressed on the surface of different cancer cells and promotes cancer progression; therefore, it could be a potential target for cancer treatment. We have revealed that a synthetic peptide containing HLA-A2-restricted cytotoxic T lymphocyte (CTL) and B cell epitope can induce cellular and humoral immunity against TAL6-expressing cancer.

View Article and Find Full Text PDF

A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy.

Gene

December 2018

Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.

In this review, we specifically focus on genetic modifications of oncolytic adenovirus 5 (Ad5)-based vectors that enhance replication, oncolysis/spread, and virus-mediated tumor immunosurveillance. The finding of negative regulation of minor core protein V by SUMOylation led to the identification of amino acid residues, which when mutated increase adenovirus replication and progeny yield. Suppression of Dicer and/or RNAi pathway with shRNA or p19 tomato bushy stunt protein also results in significant enhancement of adenovirus replication and progeny yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!