Neuroendocrine research in epilepsy focuses on the interface among neurology, endocrinology, gynecology/andrology and psychiatry as it pertains to epilepsy. There are clinically important reciprocal interactions between hormones and the brain such that neuroactive hormones can modulate neuronal excitability and seizure occurrence while epileptiform discharges can disrupt hormonal secretion and promote the development of reproductive disorders. An understanding of these interactions and their mechanisms is important to the comprehensive management of individuals with epilepsy. The interactions are relevant not only to the management of seizure disorder but also epilepsy comorbidities such as reproductive dysfunction, hyposexuality and emotional disorders. This review focuses on some of the established biological underpinnings of the relationship and their clinical relevance. It identifies gaps in our knowledge and areas of promising research. The research has led to ongoing clinical trials to develop hormonal therapies for the treatment of epilepsy. The review also focuses on complications of epilepsy treatment with antiepileptic drugs. Although antiepileptic drugs have been the mainstay of epilepsy treatment, they can also have some adverse effects on sexual and reproductive function as well as bone density. As longevity increases, the prevention, diagnosis and treatment of osteoporosis becomes an increasingly more important topic, especially for individuals with epilepsy. The differential effects of antiepileptic drugs on bone density and their various mechanisms of action are reviewed and some guidelines and future directions for prevention of osteoporosis and treatment are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2011.02.009DOI Listing

Publication Analysis

Top Keywords

antiepileptic drugs
12
epilepsy
9
individuals epilepsy
8
review focuses
8
epilepsy treatment
8
bone density
8
treatment
5
neuroendocrinological aspects
4
aspects epilepsy
4
epilepsy issues
4

Similar Publications

Colchicine: A Dual Therapeutic Target for Trichinellosis.

Acta Parasitol

January 2025

Department of Medical Parasitology, Faculty of Medicine, Zagazig University, El Kawmia Square, Zagazig, Sharkia Governorate, Egypt.

Purpose: Trichinellosis affects around 11 million people globally. Treatments for this medical condition are limited by adverse effects and resistance, emphasising the importance of effective and safe therapies. Consequentially, we sought to study colchicine's synergistic effects with atorvastatin or acetazolamide in the treatment of Trichinella spiralis (T.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social skills and the presence of repetitive and restricted behaviors and interests. The social behavior of the zebrafish (Danio rerio) makes this organism a valuable tool for modeling ASD in order to explore the social impairment typical of this disorder. In addition to transgenic models, exposure of zebrafish embryos to valproic acid (VPA) has been found to produce ASD-like symptoms.

View Article and Find Full Text PDF

Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).

View Article and Find Full Text PDF

Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres.

Cells

January 2025

Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.

Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest.

View Article and Find Full Text PDF

Background: Lung cancer is one of the leading causes of cancer-related deaths worldwide, with treatment failure resulting from metastasis. C-X-C chemokine receptor type 4 () plays a crucial role in tumor cell migration and metastasis. Recent studies have suggested that the commonly used antiepileptic drug, carbamazepine (CBZ), may impede tumor metastasis; however, its specific mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!