Plasmacytoid dendritic cells mature independently of MyD88 and IFN-αβR in response to Listeria and stimulate CD8 T cells.

Immunol Lett

Department of Microbiology and Immunology, University of Gothenburg, Box 435, SE-40530 Gothenburg, Sweden.

Published: August 2011

Plasmacytoid dendritic cells (pDCs) are a subpopulation of dendritic cells specialized in the production of IFN-α/β, particularly during viral infections. In this way pDCs directly impact antiviral immunity and influence T cell activation. However, despite their role as modulators of the immune response, their function as antigen-presenting cells (APCs) remains poorly understood. Indeed, their capacity as APCs during bacterial infections is unexplored. Here we investigate the importance of MyD88 and IFN-α/β in upregulating costimulatory molecules on pDCs during Listeria infection and their impact on activation of naïve CD8 T cells. We show that pDCs efficiently upregulate CD80 and CD86 during systemic Listeria infection, yet express lower levels of these molecules than conventional dendritic cells (cDCs). Furthermore, pDCs are able to stimulate CD8 T cell proliferation and IFN-γ production, although less efficiently than cDCs. Despite these differences, the influence of MyD88 and IFN-α/β on CD80 and CD86 expression on pDCs and cDCs is similar. Thus, our data show for the first time the potential of pDCs to activate CD8 T cells in response to a bacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2011.03.007DOI Listing

Publication Analysis

Top Keywords

dendritic cells
16
cd8 cells
12
plasmacytoid dendritic
8
cells
8
stimulate cd8
8
cells pdcs
8
myd88 ifn-α/β
8
listeria infection
8
cd80 cd86
8
pdcs
7

Similar Publications

Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.

View Article and Find Full Text PDF

Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.

View Article and Find Full Text PDF

Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B.

View Article and Find Full Text PDF

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!