Sensitizing effect of 3-methyladenine on radiation-induced cytotoxicity in radio-resistant HepG2 cells in vitro and in tumor xenografts.

Chem Biol Interact

Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, Taiwan.

Published: July 2011

Many recent efforts have focused on targeting cell death pathways for discovering new cancer therapies. The relative resistance of liver cancer cells to ionizing radiation (IR) and chemotherapeutic agents due to autophagic response limits the available treatment options for this type of cancer. In this study, 3-methyladenine (3-MA), an autophagy inhibitor, was investigated for its potential to enhance radio-sensitivity under radio-resistant conditions both in vitro and in vivo. Hep3B and HepG2 cells were used to examine the radio-resistance of liver cancer cells. The results show that Hep3B cells respond to irradiation with increased apoptotic cell death and that HepG2 is radio-resistant due to the IR-induced autophagy, as verified by DNA fragmentation, electron microscopy, acidic vesicular organelle formation, and Western blot analysis. Application of IR with 3-MA to inhibit autophagy simultaneously suppressed the expression of LC3 and enhanced cell death. The tumor xenograft model in nude mice verified the synergistic cytotoxic effect of 3-MA and IR, which resulted in significant repression of tumor growth. The results demonstrate that IR-induced autophagy provides a self-protective mechanism against radiotherapy in HepG2 cells. In addition, 3-MA enhances the cytotoxicity of IR in cell models and suppresses tumor growth in animal models. Based on the results, application of 3-MA, or other autophagy inhibitors, could be used as an adjuvant for radiotherapy when radio-resistance develops as a result of autophagy response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2011.03.011DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
12
cell death
12
liver cancer
8
cancer cells
8
3-ma autophagy
8
ir-induced autophagy
8
application 3-ma
8
tumor growth
8
cells
6
autophagy
6

Similar Publications

Mangiferin and EGCG Compounds Fight Against Hyperlipidemia by Promoting FFA Oxidation via AMPK/PPAR.

PPAR Res

December 2024

Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, Yunnan, China.

Hyperlipidemia is a critical risk factor for obesity, diabetes, cardiovascular diseases, and other chronic diseases. Our study was to determine the effects and mechanism of mangiferin (MF) and epigallocatechin gallate (EGCG) compounds on improving hyperlipidemia in HepG2 cells. HepG2 cells were treated with 0.

View Article and Find Full Text PDF

Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .

Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.

View Article and Find Full Text PDF

GC-MS analysis, anti-inflammatory and anti-proliferative properties of the aerial parts of three .

Toxicol Rep

December 2024

Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt.

Background: Due to their variability and safety, widespread research on phytochemicals continually encourages researchers to study various plants for their potential health benefits.

Objectives: This study aims to explore the phytochemical constituents of the aerial parts of three spp.; , and existed in Egyptian nature using GC-MS analysis and studying their different biological activities in correlation to computational analysis.

View Article and Find Full Text PDF

β-caryophyllene sensitizes hepatocellular carcinoma cells to chemotherapeutics and inhibits cell malignancy through targeting MAPK signaling pathway.

Front Pharmacol

December 2024

Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.

Background: β-caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene extracted from various plants, and widely used as a medicinal agent for various diseases. During hepatocellular carcinoma (HCC) development, cancer cells generally exhibit increased cell proliferation due to mutations or aberrant expression of key regulatory genes. The current study determines the cytotoxic effects of BCP alone or in combination with doxorubicin (DOX) and cisplatin (DDP) on HCC cells, and elucidates the underlying mechanism of BCP to exert its anticancer activities.

View Article and Find Full Text PDF

Background: Studies have shown that DNA methylation of the CACNA1C gene is involved in the pathogenesis of various diseases and the mechanism of drug action. However, its relationship with atrial fibrillation (AF) remains largely unexplored.

Objective: To investigate the association between DNA methylation of the CACNA1C gene and AF by combining decitabine (5-Aza-2'-deoxycytidine, AZA) treatment with multi-omics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!