Determination of the phosphorylation site in peptides by conventional tandem mass spectrometry is subject to ambiguity due to the neutral loss of the phosphate groups, especially in multiphosphorylated peptides. To prevent the neutral loss, the phosphate groups in phosphoserine or phosphothreonine peptides were replaced by p-bromobenzyl mercaptan via β-elimination and Michael addition. The unique isotopic signature of the Br introduced facilitated definitive localization of phosphorylation sites in multiphosphorylated peptides with highly adjacent serine or threonine residues. This method could be used to confirm phosphorylation sites determined by conventional tandem mass spectrometry after phosphopeptide enrichment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2011.03.032 | DOI Listing |
Ann Rheum Dis
January 2025
Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan. Electronic address:
Objectives: The usefulness of methotrexate-polyglutamates (MTX-PGs) concentration for management of rheumatoid arthritis has been debated. We aimed to clarify the association of MTX-PGs concentration with efficacy and safety in MTX-naïve patients initiating MTX in a prospective interventional clinical trial.
Methods: The MIRACLE trial enrolled 300 MTX-naïve patients.
J Infect Dis
January 2025
Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA, 94404 USA.
Background: Lenacapavir is a highly potent first-in-class inhibitor of HIV-1 capsid approved for the treatment of heavily treatment-experienced (HTE) people with HIV-1 (PWH) harboring multidrug resistant (MDR) virus, in combination with an optimized background regimen (OBR). Resistance analyses conducted after 2 years of lenacapavir treatment in the phase 2/3 CAPELLA study are described.
Methods: CAPELLA enrolled viremic HTE PWH with resistance to 2 or more drugs per class in at least 3 of the 4 main drug classes.
J Endocrinol
January 2025
K Soma, Psychology, The University of British Columbia, Vancouver, V6T 1Z4, Canada.
Maternal diet has long-term effects on offspring brain development and behavior. Sucrose (table sugar) intakes are high in modern diets, but it is not clear how a maternal high-sucrose diet (HSD) affects the offspring. In rats, a maternal HSD (26% of calories from sucrose, which is human-relevant) alters maternal metabolism and brain and also alters adult offspring endocrinology and behavior in a sex-specific manner.
View Article and Find Full Text PDFFood Chem X
January 2025
Academy of National Food and Strategic Reserves Administration, NFSRA Key Laboratory of Grain and oil quality and safety, Beijing 100037, China.
The contamination of Alternaria toxins poses a potential risk to human health. This study developed a rapid, efficient, and environmentally friendly method for the simultaneous determination of five types of Alternaria toxins in wheat using high-precision and stable isotope liquid chromatography tandem mass spectrometry. The comparison between dilution method and solid-phase extraction method shows that the former achieves satisfactory results with a simple and convenient sample purification method.
View Article and Find Full Text PDFMass Spectrom Rev
January 2025
Asia-Pacific Glycomics Reference Site, Daejeon, Korea.
With the increasing FDA approvals of glycoprotein-based biotherapeutics including monoclonal antibodies, cytokines, and enzyme treatments, the significance of glycosylation in modulating drug efficacy and safety becomes central. This review highlights the crucial role of mass spectrometry (MS) in elucidating the glycome of biotherapeutics that feature N- and O-glycosylation, directly addressing the challenges posed by glycosylation complexity and heterogeneity. We have detailed the advancements and application of MS technologies including MALDI-TOF MS, LC-MS, and tandem MS in the precise characterization of glycoprotein therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!