Trimer, tetramer, and pentamer oligomers based on the polymer backbone structure of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) have been synthesized by Horner-Wadsworth-Emmons reactions. The fluorescence spectra, emission quantum yields, and lifetimes of the oligomers have been characterized in dilute chloroform solutions. The oligomers exhibit a sequential increase in absorption and emission wavelength maxima and a decrease in fluorescence lifetime as the π conjugation length is increased. The shortening in excited state lifetime is shown to be due to an increase in the rates of both radiative and nonradiative processes. The absence of a mirror-image relationship for the absorption and fluorescence spectra of the oligomers is attributed to the photoexcitation of a range of torsional configurations followed by relaxation to a more planar arrangement that then emits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo200336m | DOI Listing |
Brief Bioinform
November 2024
Department of Biology, University at Albany, SUNY, 1400 Washington Ave, Albany, NY 12222, United States.
The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra among fluorophores. In traditional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. However, organic fluorophores possess characteristic excitation spectra in addition to their unique emission spectral signatures.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University, Riyadh Saudi Arabia.
In this study, an optical sensor, JA/(2,6-di((E)-benzylidene)cyclohexan-1-one), was synthesized and characterized using H NMR and FT-IR spectroscopy. The sensor exhibited high efficiency and selectivity in detecting Pb ions, even in the presence of potential interfering ions such as Mn, Cu, Co, Cr, Ni, Ce, Hg, and Cd in aqueous solutions. The interaction of JA with Pb resulted in a significant enhancement of fluorescence intensity, suggesting the formation of a stable complex.
View Article and Find Full Text PDFMicroscopy (Oxf)
January 2025
Department of Materials Physics, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
The distribution of dopants in host crystals significantly influences the chemical and electronic properties of materials. Therefore, determining this distribution is crucial for optimizing material performance. The previously developed statistical ALCHEMI (St-ALCHEMI), an extension of the atom-location by channeling-enhanced microanalysis (ALCHEMI) technique, utilizes variations in electron channeling based on the beam direction relative to the crystal orientation.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Particle Technology (LFG), Department of Chemical and Biological, Engineering (CBI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany.
Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!