We use molecular dynamics simulations to determine the melting point of ice I(h) for the polarizable POL3 water force field (Dang, L. X. J. Chem. Phys.1992, 97, 2659). Simulations are performed on a slab of ice I(h) with two free surfaces at several different temperatures. The analysis of the time evolution of the total energy in the course of the simulations at the set of temperatures yields the melting point of the POL3 model to be T(m) = 180 ± 10 K. Moreover, the results of the simulations show that the degree of hydrogen-bond disorder occurring in the bulk of POL3 ice is larger (at the corresponding degree of undercooling) than in ice modeled by nonpolarizable water models. These results demonstrate that the POL3 water force field is rather a poor model for studying ice and ice-liquid or ice-vapor interfaces. While a number of polarizable water models have been developed over the past years, little is known about their performance in simulations of supercooled water and ice. This study thus highlights the need for testing of the existing polarizable water models over a broad range of temperatures, pressures, and phases, and developing a new polarizable water force field, reliable over larger areas of the phase diagram.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp110391q | DOI Listing |
Anal Methods
January 2025
Istanbul University, Faculty of Pharmacy, Department of Analytical Chemistry, 34116, Istanbul, Turkey.
In this study, a new reversed phase high performance liquid chromatography method using two detectors was developed for the analysis of degradation and process impurities of ivabradine in pharmaceutical preparations. A PDA detector set to 285 nm wavelength and a QDa detector set to positive scan mode were used in the method. In the developed method, the separation process was carried out in a Zorbax phenyl column with a gradient application of a 0.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Elettra Sincrotrone Trieste, Italy.
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.
View Article and Find Full Text PDFInt Wound J
January 2025
Applied BioSciences, Faculty of Science and Engineering, Macquarie University, North Ryde, New South Wales, Australia.
There are two major styles of maggot debridement dressings: (1) confinement dressings that form a cage around the wound, and (2) containment dressings that completely surround the maggots within a sealed porous bag. For producers and clinicians wanting to prepare containment dressings using readily available polyester bags, it is currently difficult to seal these bags without expensive high-temperature plastic welders. This study aimed to identify simple and affordable methods for sealing maggots within polyester net bags.
View Article and Find Full Text PDFFoods
December 2024
Department of Marine Bio Food Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Republic of Korea.
Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Energy and Automotive Engineering, Shunde Polytechnic, Foshan 528300, China.
A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!