A new P-type ATPase gene, cta3, has been identified in Schizosaccharomyces pombe. The deduced amino acid sequence presents a 45% identity with the Saccharomyces cerevisiae putative Ca2(+)-ATPase encoded by the PMR2 gene. The cta3 protein contains 7 out of the 8 amino acid residues involved in high affinity Ca2+ binding in the sarcoplasmic reticulum Ca2(+)-ATPase from muscles. It also contains a region similar to the phospholamban-binding domain that characterizes this Ca2+ pump. A null mutation of cta3 leads to higher levels of cytosolic free Ca2+ and to lower amounts of sequestered and bound Ca2+. Cellular Ca2+ efflux and rates of uptake into intracellular compartments are reduced by the loss of cta3 function. The sequence analysis and the physiological results strongly support the conclusion that the cta3 gene encodes a Ca2(+)-ATPase, probably located in intracellular membranes.
Download full-text PDF |
Source |
---|
Protein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, China.
-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from -methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from () was heterologously expressed in BL21(DE3) and the enzymatic properties of the expressed protein were analyzed.
View Article and Find Full Text PDFThe pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-B spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!