We investigated the Fe-site substitution effect on the structural and magnetic properties of the infinite layer iron oxide Sr(Fe(1-x)M(x))O(2) (M = Co, Mn) using synchrotron X-ray diffraction, neutron diffraction, and (57)Fe Mössbauer spectroscopy. Both systems have a similar solubility limit of x ≈ 0.3, retaining the ideal infinite layer structure with a space group of P4/mmm. For the Fe-Co system, both in-plane and out-of-plane axes decrease linearly and only slightly with x, reflecting the ionic radius difference between Fe(2+) and Co(2+). For the Fe-Mn system the lattice evolution also follows Vegard's law but is anisotropic: the in-plane axis increases, while the out-of-plane decreases prominently. The magnetic properties are little influenced by Co substitution. On the contrary, Mn substitution drastically destabilizes the G-type magnetic order, featured by a significant reduction and a large distribution of the hyperfine field in the Mössbauer spectra, which suggests the presence of magnetic frustration induced presumably by a ferromagnetic out-of-plane Mn-Fe interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic102467uDOI Listing

Publication Analysis

Top Keywords

magnetic properties
12
fe-site substitution
8
substitution structural
8
structural magnetic
8
infinite layer
8
magnetic
5
properties srfeo2
4
srfeo2 investigated
4
investigated fe-site
4
properties infinite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!