A better comprehension of the prilocaine (PLC)-β-cyclodextrin (β-CD) complex liberation to membranes was provided by studying the architectural supramolecular arrangements of PLC, β-CD and egg phosphatidylcholine (EPC) liposomes, a membrane model. The topologies and possible interactions of mixtures of PLC, β-CD and EPC liposomes were investigated by nuclear magnetic resonances combining experimental (1)H-NMR (1D ROESY, STD and DOSY) at different pHs. The results indicate that in the mixture PLC/β-CD/EPC at pH 10 the PLC molecules are almost totally embedded into the liposomes and little interaction was observed between PLC and β-CD. However, at pH 5.5 not only was PLC imbedded in the EPC bilayer, but PLC was also interacting with β-CD. These results were rationalized as a spontaneous PLC release from β-CD to liposomes vesicles, whereas the PLC/EPC complex formation was higher at pH 10 than pH 5.5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.2740 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!