A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 2: comparative assessment of prediction methods of human volume of distribution. | LitMetric

The objective of this study was to evaluate the performance of various empirical, semimechanistic and mechanistic methodologies with and without protein binding corrections for the prediction of human volume of distribution at steady state (Vss ). PhRMA member companies contributed a set of blinded data from preclinical and clinical studies, and 18 drugs with intravenous clinical pharmacokinetics (PK) data were available for the analysis. In vivo and in vitro preclinical data were used to predict Vss by 24 different methods. Various statistical and outlier techniques were employed to assess the predictability of each method. There was not simply one method that predicts Vss accurately for all compounds. Across methods, the maximum success rate in predicting human Vss was 100%, 94%, and 78% of the compounds with predictions falling within tenfold, threefold, and twofold error, respectively, of the observed Vss . Generally, the methods that made use of in vivo preclinical data were more predictive than those methods that relied solely on in vitro data. However, for many compounds, in vivo data from only two species (generally rat and dog) were available and/or the required in vitro data were missing, which meant some methods could not be properly evaluated. It is recommended to initially use the in vitro tissue composition-based equations to predict Vss in preclinical species and humans, putting the assumptions and compound properties into context. As in vivo data become available, these predictions should be reassessed and rationalized to indicate the level of confidence (uncertainty) in the human Vss prediction. The top three methods that perform strongly at integrating in vivo data in this way were the Øie-Tozer, the rat -dog-human proportionality equation, and the lumped-PBPK approach. Overall, the scientific benefit of this study was to obtain greater characterization of predictions of human Vss from several methods available in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.22553DOI Listing

Publication Analysis

Top Keywords

human vss
12
vivo data
12
data
9
methods
8
human volume
8
volume distribution
8
vss
8
preclinical data
8
predict vss
8
vss methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!