The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.22598DOI Listing

Publication Analysis

Top Keywords

naked mole
24
mole rat
24
cortical area
12
neonatal naked
12
expression domain
12
rat heterocephalus
8
heterocephalus glaber
8
cerebral cortex
8
visual system
8
somatosensory system
8

Similar Publications

Explainable Thyroid Cancer Diagnosis Through Two-Level Machine Learning Optimization with an Improved Naked Mole-Rat Algorithm.

Cancers (Basel)

December 2024

Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.

Modern technologies, particularly artificial intelligence methods such as machine learning, hold immense potential for supporting doctors with cancer diagnostics. This study explores the enhancement of popular machine learning methods using a bio-inspired algorithm-the naked mole-rat algorithm (NMRA)-to assess the malignancy of thyroid tumors. The study utilized a novel dataset released in 2022, containing data collected at Shengjing Hospital of China Medical University.

View Article and Find Full Text PDF

Among the various cations, the Fe ion is one of the most critical transition metal ions in living cells for many cellular functions and enzymatic activities. The decrease or overloading of Fe can lead to different disruptions in humans. Also, Fe, highly toxic, is very common in all industrial wastewater.

View Article and Find Full Text PDF

DNA repair is a most important cellular process that helps maintain the integrity of the genome and is currently considered by researchers as one of the factors determining the maximum lifespan. The central regulator of the DNA repair process is the enzyme poly(ADP-ribose)polymerase 1 (PARP1). PARP1 catalyzes the synthesis of poly(ADP-ribose) polymer (PAR) upon DNA damage using nicotinamide adenine dinucleotide (NAD+) as a substrate.

View Article and Find Full Text PDF

In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations.

View Article and Find Full Text PDF

The naked mole-rat (NMR; ) is a eusocial subterranean rodent with a highly unusual set of physiological traits that has attracted great interest amongst the scientific community. However, the genetic basis of most of these traits has not been elucidated. To facilitate our understanding of the molecular mechanisms underlying NMR physiology and behaviour, we generated a long-read chromosomal-level genome assembly of the NMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!