Carbon nanotubes and carbon nanobelts were obtained via single-needle electrospinning on a basis of water-in-oil (W/O) emulsion technique, respectively. The morphology of electrospun products can be controlled by controlling the temperature of the collector during the electrospinning process. The mechanism of fabricating PAN nanotubes and nanobelts by emulsion electrospinning is discussed in detail. Transmission electron microscopy and scanning electron microscope results show that the carbon nanotubes (the inner diameter of 25-50 nm and the outer diameter of 50-100 nm) have a wall thickness of 10-50 nm, and the width and thickness of the nanobelts range from 100 to 300 nm, and 1 to 5 nm, respectively. A slight difference of bonding configuration of the carbon nanofibers, carbon nanotubes and carbon nanobelts is attributed partly to their different topological structures. The novel method is versatile and could be extended to the fabrication of various types of nanotubes and nanobelts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0nr00936a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!