Mathematical simulations and benchmark measurements were performed to assess the impact that normal variations in human calcium content have on in vivo K x-ray fluorescence measurements of lead in bone. Four sets of cortical bone tissue simulants were fabricated containing from 20.8% to 23.8% calcium (by weight) for measurement in a surrogate (phantom) of the human leg. The net counts detected in the coherent backscatter peak at 88.034 keV using a Cd source indicate a positive trend, with a variability of up to 17% over the range of assessed calcium content. Mathematical simulations confirm this trend and also demonstrate that the contribution of 87.3 keV Pb Kβ2 counts, which are unresolved in measurements, do not contribute significantly to the coherent peak at low levels of bone-lead content. Both measurements and simulations confirm that calcium is a statistically significant parameter in predicting the K-XRF response and suggest that lead levels may be over-predicted for individuals having low bone density compared to the calibration matrix. Simulations identify a 4.5% negative bias in measured lead values for each 1% increase in calcium weight percent in the bone matrix as compared to the calibration matrix. It is therefore important to accommodate this uncertainty when performing epidemiological studies of populations having a wide range of bone densities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HP.0b013e3181f725af | DOI Listing |
Med Phys
January 2025
Breast Imaging Department, Red Cross Hospital Munich, Munich, Germany.
Background: A significant proportion of false positive recalls of mammography-screened women is due to benign breast cysts and simple fibroadenomas. These lesions appear mammographically as smooth-shaped dense masses and require the recalling of women for a breast ultrasound to obtain complementary imaging information. They can be identified safely by ultrasound with no need for further assessment or treatment.
View Article and Find Full Text PDFFront Optoelectron
January 2025
Institution of Physics, Saratov State University, Saratov, 410012, Russia.
Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
New York University Grossman School of Medicine, New York, NY, USA.
Background: Synucleinopathies lack cures. Antibody therapies targeting α-synuclein aim to inhibit aggregation and enhance degradation, but have limited brain entry because of size (150kDa). Smaller single-domain antibodies (sdAbs, 15kDa) have substantially improved brain uptake.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
McGill University, Montreal, QC, Canada.
Background: Despite amyloid-β (Aβ) plaques and tau neurofibrillary tangles being recognized as major Alzheimer's Disease (AD) hallmarks, their synergistic contribution to neuronal activity remains unclear. We developed a neuroimaging-based personalized brain activity model to assess the in-vivo functional impact of AD pathophysiology. In previous reports, model-inferred neuronal excitability predicted disease progression (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!