The present study aimed to determine the impact of cell wall composition and lignin content on enzyme adsorption and degradability. Thioacidolysis analysis of residual lignins in wheat straw after steam-explosion or organosolv pretreatment revealed an increase in lignin condensation degree of 27% and 33%, respectively. Surface hydrophobicity assessed through wettability tests decreased after the pretreatments (contact angle decrease of 20-50%), but increased with enzymatic conversion (30% maximum contact angle increase) and correlatively to lignin content. Adsorption of the three major cellulases Cel7A, Cel6A and Cel7B from Trichoderma reesei decreased with increasing hydrolysis time, down to 7%, 31% and 70% on the sample with the highest lignin content, respectively. The fraction of unspecifically bound enzymes was dependent both on the enzyme and the lignin content. Adsorption and specific activity were shown to be inversely proportional to lignin content and hydrophobicity, suggesting that lignin is one of the factors restricting enzymatic hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.03.011DOI Listing

Publication Analysis

Top Keywords

lignin content
20
enzymatic hydrolysis
8
wheat straw
8
cell wall
8
wall composition
8
contact angle
8
content adsorption
8
lignin
7
content
5
pretreatment enzymatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!