Ring-opening metathesis polymerization (ROMP) derived monoliths were prepared from 5-norborn-2-enemethyl bromide (NBE-CH(2)Br) and tris(5-norborn-2-enemethoxy)methylsilane ((NBE-CH(2)O)(3)SiCH(3)) within the confines of surface-silanized borosilicate columns (100 mm × 3 mm I.D.), applying Grubbs' first generation benzylidene-type catalyst [RuCl(2)(PCy(3))(2)(CHPh)]. Two monoliths of the same recipe were converted into strong anion-exchangers applying two different approaches. Monolith I was prepared by a two-step reaction of the poly(NBE-CH(2)-Br) moieties with diethyl amine forming a weak-anion exchanger followed by reaction (quaternization) with ethyl iodide. Monolith II was prepared via a single-step reaction of the poly(NBE-CH(2)-Br) moieties with triethyl amine. The resulting monolithic anion-exchangers prepared demonstrated a good aptitude for the anion-exchange separation of single-stranded nucleic acids (ss-DNA). However, monolith II showed superior separation efficiency compared to monolith I indicated by sharper analyte peaks and better resolution values for the 5'-phosphorylated oligodeoxythymidylic acids fragments. On monolith II, the seven fragments of [d(pT)(12-18)] were baseline separated in less than 9 min. The influence of the buffer pH on the separation efficiency was studied applying a phosphate (0.05 mol/L, pH 7 and 8) and Tris-HCl buffer (0.05 mol/L, pH 9), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2011.03.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!